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 a b s t r a c t

A type of multiweighted coupled reaction-diffusion neural networks with general delays is for-
mulated in this study, and the passivity and synchronization are addressed via spatial sampling 
control. Firstly, an innovative spatial sampling controller is developed, which is distributed at the 
midpoint of each spatial sampling interval and improves traditional full-domain control schemes. 
Additionally, by utilizing variable rearrangement technique and constructing some Lyapunov-
Krasovskii functionals, several passivity and synchronization criteria presented by LMIs are de-
rived. Moreover, to further reduce the control cost, an adaptive spatial sampling control strategy 
is proposed and the adaptive synchronization is rigorously analyzed. Note that only the weighted 
union topology of all coupling layers is constrained to be connected, which relaxes the previ-
ous requirement on the strong connectivity of each coupling topology. The obtained results are 
confirmed by an illustrative example and are applied to image encryption and decryption.

1.  Introduction

Over recent decades, coupled neural networks (CNNs) have attracted widespread attention due to their extensive applications in 
addressing complex practical problems, such as pattern recognition, associative memory and quadratic optimization [1–3]. However, 
most of these models are described by a single coupling, irrespective of the complexity of the relationships among real individuals. 
Although the use of a single coupling model offers the advantages of simplicity and ease of analysis, this simplification might lead to an 
incomplete understanding of the system’s complexity. For instance, in social networks, individuals communicate via multiple channels, 
including media platforms, emails and phone calls [4]. Similarly, the complexity of controlling COVID-19 has been intensified by its 
multiple transmission routes like person-to-person, fomite-to-person and environmental-to-person transmission [5]. To capture the 
richness of these interactions, network models incorporate multi-weighted couplings, which have important applications in biological 
network modeling, multi-modal data processing and economic systems [6–8].

Passivity, as a fundamental property of physical systems, characterizes the energy dissipation behavior via the system’s intrinsic 
energy storage dynamics and its external input-output relationships. Specifically, a passive system is a physical system with inher-
ent dissipative components, in which the accumulated stored energy for any arbitrary time durations is less than or equal to the 
energy supplied through external inputs [9]. Typical examples include resistors, capacitors, and inductors in electrical circuits [10]. 
This property implies that the system cannot generate energy by itself but can only dissipate energy supplied by external sources. 
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\begin {align}\frac {\partial z_i(t,\varsigma )}{\partial t} =& \mathcal {D}\frac {\partial ^2 z_i(t,\varsigma )}{\partial \varsigma ^2} - \mathcal {A}z_i(t,\varsigma ) + \mathcal {B}_1 f_1\left (z_i(t, \varsigma )\right ) + \mathcal {B}_2 f_2\left (z_i(\varrho (t), \varsigma )\right ) \notag \\ & + \mathcal {B}_3 \int _{t-\iota (t)}^t f_3\left (z_i(v, \varsigma )\right )\mathrm {d}v + \sum _{\eta =1}^{\sigma } \sum _{j=1}^{\mathcal {N}} c^\eta g_{ij}^\eta \Gamma ^\eta z_j(t,\varsigma ) \notag \\ & + \omega _i(t,\varsigma ) + u_i(t,\varsigma ),\quad i\in \overline {1,\mathcal {N}}, \label {eq:system}\end {align}


$t\in \mathcal {R}_{\ge 0}$


$\varsigma \in (\underline {\alpha },\overline {\alpha })$


$z_i(t,\varsigma ) = ( z_i^1(t,\varsigma ) , z_i^2(t,\varsigma ) , \dots , z_i^n(t,\varsigma ) )^T \in \mathcal {R}^n$


$i$


$f_r(z_i(\cdot )) = ( f_r^1(z_i^1(\cdot )), f_r^2(z_i^2(\cdot )),\dots ,f_r^n(z_i^n(\cdot )) )^T \in \mathcal {R}^n$


$r=1,2,3$


$\omega _i(t,\varsigma )\in \mathcal {R}^{n}$


$u_i(t,\varsigma )\in \mathcal {R}^{n}$


$\varrho (t)$


$\iota (t)$


$\mathcal {D} = \text {diag}\{ d_1,d_2,\dots ,d_n \} >0$


$\mathcal {A}=\text {diag}\{a_1,a_2,\dots ,a_n \}$


$a_k>0$


$k$


$\mathcal {B}_r = (b_{ij}^r)_{n\times n}$


$(r\in \overline {1,3})$


$c^\eta >0$


$\Gamma ^{\eta } = \text {diag} \{ \gamma _1^{\eta }, \gamma _2^{\eta }, \dots , \gamma _n^{\eta } \} >0$


$\eta $


$G^{\eta } = (g^{\eta }_{ij})_{\mathcal {N} \times \mathcal {N}}$


$\eta $


$g^{\eta }_{ij} > 0$


$(i \ne j)$


$j$


$i$


$g^{\eta }_{ij} = 0$


$g^{\eta }_{ii} = -\sum _{j=1,j \ne i}^{\mathcal {N}} g^{\eta }_{ij}$


$f_r(\cdot ): \mathcal {R}^n \to \mathcal {R}^n$


$r \in \overline {1,3}$


$L_r$


\begin {equation*}\|f_r(z)-f_r(z^*)\|_2 \leq \sqrt {L_r}\| z - z^* \|_2,\quad z,z^* \in \mathcal {R}^n.\end {equation*}


$\hat {\varrho }$


$\bar {\varrho }$


$\bar {\iota }$


\begin {equation*}t \le \varrho (t)+\bar {\varrho }, \quad 0 < \hat {\varrho } \le \dot {\varrho }(t), \quad \iota (t) \le \bar {\iota }.\end {equation*}


\begin {align}\begin {cases} z_i(t,\underline {\alpha }) = z_i(t,\overline {\alpha }) = \mathbf {0}_n, &t\in [-\iota ,+\infty ),\\ z_i(t,\varsigma )=\phi _i(t,\varsigma ), &(t,\varsigma ) \in [-\iota , 0]\times (\underline {\alpha },\overline {\alpha }), \end {cases} \label {eq:boundary}\end {align}


$\iota = \max \left \{-\varrho (0), \bar {\iota } \right \}$


$\varrho (0) \le 0$


$\phi _i(t,\varsigma ) = ( \phi _i^1(t,\varsigma ), \phi _i^2(t,\varsigma ), \dots , \phi _i^n(t,\varsigma ))^T \in \mathcal {R}^n$


$\varrho (t)$


$\varrho (t) =t-h(t)$


$0\le h(t)\le h$


$\varrho (t)$


$\varrho (t)=pt$


$0<p<1$


$z_i(t,\varsigma ) = ( z_i^1(t,\varsigma ), z_i^2(t,\varsigma ),\dots ,z_i^n(t,\varsigma ) )^T$


\begin {align}\frac {\partial z_i^{k}(t,\varsigma )}{\partial t} =&\ d_{k} \frac {\partial ^2 z_i^{k}(t,\varsigma )}{\partial \varsigma ^2} - a_{k} z_i^{k}(t,\varsigma ) + \sum _{s=1}^{n} b^1_{ks} f_1^s\left (z_i^s(t, \varsigma )\right ) \notag \\ &+ \sum _{s=1}^{n} b^2_{ks} f_2^s\left (z_i^s\left (\varrho (t), \varsigma \right )\right ) + \sum _{s=1}^{n} b^3_{ks} \int _{t-\iota (t)}^t f_3^s\left (z_i^s(v, \varsigma )\right ) \mathrm {d}v \notag \\ &+ \sum _{\eta =1}^{\sigma } \sum _{j=1}^{\mathcal {N}} c^\eta g_{ij}^\eta \gamma ^{\eta }_{k} z_j^{k}(t,\varsigma ) + \omega _i^{k}(t,\varsigma ) + u_i^{k}(t,\varsigma ). \label {eq:systemscalar}\end {align}


$\mathcal {G}^{(k)} \in R^{\mathcal {N} \times \mathcal {N}}$


\begin {equation*}\mathcal {G}^{(k)} = \sum _{\eta =1}^{\sigma } c^{\eta } \gamma _{k}^{\eta } G^\eta , \quad k\in \overline {1,n}.\end {equation*}


$\mathcal {G}^{(k)}$


$k\in \overline {1,n}$


$\mathcal {G}^{(k)}$


$\xi ^{(k)}=( \xi ^k_1, \xi ^k_2, \dots , \xi ^k_{\mathcal {N}} )^T \in \mathcal {R}^{\mathcal {N}}$


$\xi ^k_m>0$


$m\in \overline {1,\mathcal {N}}$


$(\mathcal {G}^{(k)})^T \xi ^{(k)} = \textbf {0}_{\mathcal {N}}$


$\sum _{i=1}^{\mathcal {N}}\xi _i^k=1$


\begin {equation*}\bar {z}^{k}(t,\varsigma ) = \sum _{m=1}^{\mathcal {N}} \xi _{m}^{k} z_m^{k}(t,\varsigma ), \quad (t,\varsigma )\in \mathcal {R}_{\ge 0}\times (\underline {\alpha },\overline {\alpha }),\end {equation*}


$\bar {z}^{k}(t,\varsigma )\in \mathcal {R}$


$k\in \overline {1,n}$


$\varphi ^k(t,\varsigma )=\sum _{m=1}^{\mathcal {N}}\xi _m^k\phi _m^k(t,\varsigma )$


$(t,\varsigma ) \in [-\iota , 0]\times (\underline {\alpha },\overline {\alpha })$


${\mathcal {G}^{(k)}}^T \xi ^{(k)}=\textbf {0}_{\mathcal {N}}$


$\sum _{\eta =1}^{\sigma }\sum _{m=1}^{\mathcal {N}}c^\eta \gamma ^{\eta }_kg^\eta _{m}\xi _m^k=0$


$m\in \overline {1,\mathcal {N}}$


$k\in \overline {1,n}$


\begin {align}\frac {\partial \bar {z}^{k}(t,\varsigma )}{\partial t} =&\ d_{k} \frac {\partial ^2 \bar {z}^{k}(t,\varsigma )}{\partial \varsigma ^2} - a_{k} \bar {z}^{k}(t,\varsigma ) + \sum _{m=1}^{\mathcal {N}}\xi _m^k \sum _{s=1}^{n} b^1_{ks} f_1^s\left (z_m^s(t, \varsigma )\right ) \notag \\ &+ \sum _{m=1}^{\mathcal {N}}\xi _m^k \sum _{s=1}^{n} b^2_{ks} f_2^s\left (z_m^s\left (\varrho (t), \varsigma \right )\right ) + \sum _{m=1}^{\mathcal {N}}\xi _m^k \sum _{s=1}^{n} b^3_{ks} \int _{t-\iota (t)}^t f_3^s\left (z_m^s(v, \varsigma )\right ) \mathrm {d}v \notag \\ &+ \sum _{m=1}^{\mathcal {N}} \xi _m^k \omega _m^{k}(t,\varsigma ) + \sum _{m=1}^{\mathcal {N}} \xi _m^k u_m^{k}(t,\varsigma ). \label {eq:targetsystem}\end {align}


$e_i^k(t,\varsigma ) = z_i^k(t,\varsigma )- \bar {z}^k(t,\varsigma )\in \mathcal {R}$


\begin {align}\frac {\partial e_i^{k}(t,\varsigma )}{\partial t} =&\ d_{k} \frac {\partial ^2 e_i^{k}(t,\varsigma )}{\partial \varsigma ^2} - a_{k} e_i^{k}(t,\varsigma )\notag \\ &+ \sum _{s=1}^{n} b^1_{ks} f_1^s\left (z_i^s(t, \varsigma )\right ) - \sum _{m=1}^{\mathcal {N}} \xi _m^k \sum _{s=1}^{n} b^1_{ks} f_1^s\left (z_m^s(t, \varsigma )\right )\notag \\ &+ \sum _{s=1}^{n} b^2_{ks} f_2^s\left (z_i^s\left (\varrho (t), \varsigma \right )\right ) - \sum _{m=1}^{\mathcal {N}} \xi _m^k \sum _{s=1}^{n} b^2_{ks} f_2^s\left (z_m^s\left (\varrho (t), \varsigma \right )\right )\notag \\ &+ \sum _{s=1}^{n} b^3_{ks} \int _{t-\iota (t)}^t f_3^s\left (z_i^s(v, \varsigma )\right ) \mathrm {d}v - \sum _{m=1}^{\mathcal {N}} \xi _m^k \sum _{s=1}^{n} b^3_{ks} \int _{t-\iota (t)}^t f_3^s\left (z_m^s(v, \varsigma )\right ) \mathrm {d}v\notag \\ &+ \omega _i^{k}(t,\varsigma ) - \sum _{m=1}^{\mathcal {N}} \xi _m^k \omega _m^{k}(t,\varsigma ) + u_i^{k}(t,\varsigma ) - \sum _{m=1}^{\mathcal {N}} \xi _m^k u_m^{k}(t,\varsigma )\notag \\ &+ \sum _{\eta =1}^{\sigma } \sum _{j=1}^{\mathcal {N}} c^\eta g_{ij}^\eta \gamma ^{\eta }_{k} z_j^{k}(t,\varsigma ) , \quad i\in \overline {1,\mathcal {N}}, k\in \overline {1,n}. \label {eq:errorsystemscalar}\end {align}


\begin {equation}y_i(t,\varsigma ) = P e_i(t,\varsigma ) + Q \bar {\omega }_i(t,\varsigma ), \quad i\in \overline {1,\mathcal {N}}, \label {eq:output}\end {equation}


$y_i(t,\varsigma ) = {(y_i^1(t,\varsigma ),\dots , y_i^p(t,\varsigma ))}^T\in \mathcal {R}^p$


$e_i(t,\varsigma ) = {(e_i^1(t,\varsigma ),\dots ,e_i^n(t,\varsigma ))}^T \in \mathcal {R}^n$


$\bar {\omega }_i(t,\varsigma ) = {(\bar {\omega }_i^1(t,\varsigma ), \dots , \bar {\omega }_i^n(t,\varsigma ))}^T \in \mathcal {R}^n$


$\bar {\omega }_i^k(t,\varsigma ) = \omega _i^k(t,\varsigma ) - \sum _{m=1}^{\mathcal {N}}\xi _m^k\omega _m^k(t,\varsigma )$


$P, Q\in \mathcal {R}^{p\times n}$


\begin {align*}\hat {\omega }(t,\varsigma )&={{\Big (\big (\hat {\omega }^{(1)}(t,\varsigma )\big )}^T,{\big (\hat {\omega }^{(2)}(t,\varsigma )\big )}^T,\dots ,{\big (\hat {\omega }^{(n)}(t,\varsigma )\big )}^T\Big )}^T\in \mathcal {R}^{n\mathcal {N}},\\ \hat {\omega }^{(k)}(t,\varsigma )&={(\bar {\omega }_1^k(t,\varsigma ),\bar {\omega }_2^k(t,\varsigma ),\dots ,\bar {\omega }_{\mathcal {N}}^k(t,\varsigma ))}^T\in \mathcal {R}^{\mathcal {N}},\\ \hat {y}(t,\varsigma )&={\Big ( {\big (y^{(1)}(t,\varsigma )\big )}^T, {\big (y^{(2)}(t,\varsigma )\big )}^T, \dots ,{\big (y^{(1)}(t,\varsigma )\big )}^T \Big )}^T\in \mathcal {R}^{p\mathcal {N}}, \\ y^{(k)}(t,\varsigma )&={( y_1^k(t,\varsigma ),y_2^k(t,\varsigma ),\dots ,y_{\mathcal {N}}^k(t,\varsigma ) )}^T\in \mathcal {R}^{\mathcal {N}}.\end {align*}


$\hat {\omega }(t,\varsigma )\in \mathcal {R}^{n\mathcal {N}}$


$\hat {y}(t,\varsigma )\in \mathcal {R}^{p\mathcal {N}}$


$V(t)$


$\mathcal {H}\in \mathcal {R}^{p\mathcal {N}\times n\mathcal {N}}$


$0<\mathcal {H}_1\in \mathcal {R}^{n\mathcal {N}\times n\mathcal {N}}$


$0<\mathcal {H}_2\in \mathcal {R}^{p\mathcal {N}\times p\mathcal {N}}$


$t\in \mathcal {R}_{\ge 0}$


\begin {equation*}\dot {V}(t) \le \int _{\underline {\alpha }}^{\overline {\alpha }} \hat {y}^T(t,\varsigma ) \mathcal {H} \hat {\omega }(t,\varsigma ) \mathrm {d}\varsigma - \int _{\underline {\alpha }}^{\overline {\alpha }} \hat {\omega }^T(t,\varsigma ) \mathcal {H}_1 \hat {\omega }(t,\varsigma ) \mathrm {d}\varsigma - \int _{\underline {\alpha }}^{\overline {\alpha }} \hat {y}^T(t,\varsigma ) \mathcal {H}_2 \hat {y}(t,\varsigma )\mathrm {d}\varsigma .\end {equation*}


$\mathcal {H}_1=\textbf {0}_{n\mathcal {N}\times n\mathcal {N}}$


$\mathcal {H}_2=\textbf {0}_{p\mathcal {N}\times p\mathcal {N}}$


$\mathcal {H}_1>0$


$\mathcal {H}_2=\textbf {0}_{p\mathcal {N}\times p\mathcal {N}}$


$\mathcal {H}_2>0$


$\mathcal {H}_1=\textbf {0}_{n\mathcal {N}\times n\mathcal {N}}$


$\varepsilon >0$


$x$


$y$


$2x^Ty \le \varepsilon x^Tx + \varepsilon ^{-1}y^Ty$


$x_2>x_1>0$


$z:[x_1,x_2] \rightarrow \mathcal {R}^n$


\begin {align*}{\Big (\int _{x_1}^{x_2}z(v)\mathrm {d}v\Big )}^T {\Big (\int _{x_1}^{x_2}z(v)\mathrm {d}v\Big )} \le (x_2-x_1)\int _{x_1}^{x_2}z^T(v)z(v)\mathrm {d}v.\end {align*}


$z:[\underline {\alpha },\overline {\alpha }] \rightarrow \mathcal {R}^n$


$z(\underline {\alpha })=0$


$z(\overline {\alpha })=0$


$0<\mathcal {M}\in \mathcal {R}^{n\times n}$


\begin {equation*}\int _{\underline {\alpha }}^{\overline {\alpha }} {z(\xi )}^T\mathcal {M}z(\xi )\mathrm {d}\xi \le \frac {4(\overline {\alpha }-\underline {\alpha })^2}{\pi ^2}\int _{\underline {\alpha }}^{\overline {\alpha }}{(\frac {\mathrm {d}z}{\mathrm {d}\xi })}^T\mathcal {M}(\frac {\mathrm {d}z}{\mathrm {d}\xi })\mathrm {d}\xi .\end {equation*}


$z(\underline {\alpha })=z(\overline {\alpha })=0$


\begin {equation*}\int _{\underline {\alpha }}^{\overline {\alpha }} {z(\xi )}^T\mathcal {M}z(\xi )\mathrm {d}\xi \le \frac {(\overline {\alpha }-\underline {\alpha })^2}{\pi ^2}\int _{\underline {\alpha }}^{\overline {\alpha }}{(\frac {\mathrm {d}z}{\mathrm {d}\xi })}^T\mathcal {M}(\frac {\mathrm {d}z}{\mathrm {d}\xi })\mathrm {d}\xi .\end {equation*}


$\mathcal {P}=P\otimes \textbf {I}_{\mathcal {N}}$


$\mathcal {Q}=Q\otimes \textbf {I}_{\mathcal {N}}$


$\varLambda ^{(k)} = \mathrm {diag}\{\xi _1^k,\xi _2^k,\dots ,\xi _{\mathcal {N}}^k\}$


$\varLambda =\mathrm {diag}\{\varLambda ^{(1)},\varLambda ^{(2)},\dots ,\varLambda ^{(n)}\}\in \mathcal {R}^{n\mathcal {N}\times n\mathcal {N}}$


$\rho =1-\frac {\varepsilon _4}{2}-\frac {\delta ^2}{2\varepsilon _4(\overline {\alpha }-\underline {\alpha })^2}$


$\mathcal {G}=\mathrm {diag}\{ \mathcal {G}^{(1)}, \mathcal {G}^{(2)}, \dots , \mathcal {G}^{(n)} \} \in \mathcal {R}^{n\mathcal {N}\times n\mathcal {N}}$


\begin {equation*}\Psi = \varLambda \mathcal {G}- \varLambda \Bigg \{ \Bigg [ \frac {\pi ^2}{(\overline {\alpha }-\underline {\alpha })^2}\mathcal {D}+\mathcal {A}-\sum _{r=1}^{3}\frac {\mathcal {B}_r\mathcal {B}_r^T}{2\varepsilon _r} - \Big ( \frac {\varepsilon _1L_1}{2} + \frac {\varepsilon _2L_2}{2\hat {\varrho }} + \frac {\varepsilon _3L_3\bar {\iota }^2}{2} \Big )\textbf {I}_n \Bigg ] \otimes \textbf {I}_{\mathcal {N}} \Bigg \} - \rho \varLambda \varpi .\end {equation*}


$\varsigma _p$


$\underline {\alpha }= \varsigma _0 < \varsigma _1 < \dots < \varsigma _{m-1} < \varsigma _m = \overline {\alpha }$


$[\varsigma _p, \varsigma _{p+1})$


$\sup \limits _{p \in \overline {0,m-1}} \{\varsigma _{p+1} - \varsigma _p \} = \delta $


$\bar {\varsigma }_p = \frac {\varsigma _p + \varsigma _{p+1}}{2}$


$m$


$[\varsigma _p,\varsigma _{p+1})$


\begin {equation}\label {eq:controller} u_i(t,\varsigma ) = -\varpi _i e_i(t,\bar {\varsigma }_p), \quad \varsigma \in [\varsigma _p,\varsigma _{p+1}), \quad p\in \overline {0,m-1},\end {equation}


$t \in \mathcal {R}_{\ge 0}$


$\varpi =\textbf {I}_n\otimes \mathrm {diag}\{\varpi _1,\varpi _2,\dots ,\varpi _{\mathcal {N}}\}$


$\varpi _i$


$\varepsilon _i>0$


$(i\in \overline {1,4})$


$\mathcal {H}$


$\mathcal {H}_1$


$\mathcal {H}_2$


\begin {align*}\label {condition2} &C_1:\quad \Xi = \begin {pmatrix} \Upsilon & \Sigma \\ \Sigma ^T & \Delta \\ \end {pmatrix} \le 0, \\ &C_2: \quad \frac {\delta ^2}{2\varepsilon _4\pi ^2}\varpi - \mathcal {D}\otimes \textbf {I}_{\mathcal {N}}\le 0,\end {align*}


$\Upsilon = {[\Psi -\mathcal {P}^T\mathcal {H}_2\mathcal {P} ]}^s$


$\Sigma = \frac {1}{2} \varLambda + \mathcal {P}^T[\mathcal {H}_2]^s\mathcal {Q} - \frac {1}{2} \mathcal {P}^T \mathcal {H}$


$\Delta = \mathcal {Q}^T[\mathcal {H}_2]^s\mathcal {Q} + [\mathcal {H}_1]^s - [\mathcal {Q}^T\mathcal {H}]^s$


\begin {equation*}V(t) = \mathcal {U}(t) + \eta _1 \int _{\varrho (t)}^{t} \mathcal {U}(v)\mathrm {d}v + \eta _2 \int _{-\bar {\iota }}^{0} \left [ \int _{t+\theta }^{t}\mathcal {U}(v)\mathrm {d}v \right ] \mathrm {d}\theta ,\end {equation*}


\begin {equation*}\mathcal {U}(t) =\frac {1}{2}\sum _{k=1}^{n}\int _{\underline {\alpha }}^{\overline {\alpha }}{\Big (e^{(k)}(t,\varsigma )\Big )}^T\varLambda ^{(k)}e^{(k)}(t,\varsigma )\mathrm {d}\varsigma ,\end {equation*}


$t\in \mathcal {R}_{\ge 0}$


$\eta _1=\frac {\varepsilon _2L_2}{\hat {\varrho }}$


$\eta _2 = \varepsilon _3L_3\bar {\iota }$


$e^{(k)}={( e_1^k(t,\varsigma ), \dots , e_{\mathcal {N}}^k(t,\varsigma ) )}^T$


$k\in \overline {1,n}$


$\hat {e}(t,\varsigma ) = {\left ({\left (e^{(1)}(t,\varsigma )\right )}^T,{\left (e^{(2)}(t,\varsigma )\right )}^T, \dots ,{\left (e^{(n)}(t,\varsigma )\right )}^T\right )}^T\in \mathcal {R}^{n\mathcal {N}}$


$\mathcal {U}(t)$


\begin {align}\label {1} \dot {\mathcal {U}}(t) =& \sum _{i=1}^{\mathcal {N}}\sum _{k=1}^{n}\int _{\underline {\alpha }}^{\overline {\alpha }}\xi _i^ke_i^k(t,\varsigma )\Big [d_k\frac {\partial ^2{e_i^k(t,\varsigma ^2)}}{\partial \varsigma }-a_ke_i^k(t,\varsigma ) \notag \\ &+ \sum _{s=1}^{n}b_{ks}^1f_1^s(z_i^s(t,\varsigma ))-\sum _{s=1}^{n}b_{ks}^1f_1^s(\bar {z}^s(t,\varsigma )) \notag \\ &+ \sum _{s=1}^{n}b_{ks}^1f_1^s(\bar {z}^s(t,\varsigma ))-\sum _{m=1}^{\mathcal {N}}\xi _m^k\sum _{s=1}^{n}b_{ks}^1f_1^s(z_m^s(t,\varsigma ))\notag \\ & +\sum _{s=1}^{n}b_{ks}^2f_2^s(z_i^s(\varrho (t),\varsigma ))-\sum _{s=1}^{n}b_{ks}^2f_2^s(\bar {z}^s(\varrho (t),\varsigma )) \notag \\ & +\sum _{s=1}^{n}b_{ks}^2f_2^s(\bar {z}_i^s(\varrho (t),\varsigma )-\sum _{m=1}^{\mathcal {N}}\xi _m^k\sum _{s=1}^{n}b_{ks}^2f_2^s(z_m^s(\varrho (t),\varsigma ) \notag \\ &+ \sum _{s=1}^{n}b_{ks}^3\int _{t-\iota (t)}^{t}f_3^s(z_i^s(v,\varsigma ))\mathrm {d}v-\sum _{s=1}^{n}b_{ks}^3\int _{t-\iota (t)}^{t}f_3^s(\bar {z}^s(v,\varsigma ))\mathrm {d}v \notag \\ &+ \sum _{s=1}^{n}b_{ks}^3\int _{t-\iota (t)}^{t}f_3^s(\bar {z}^s(v,\varsigma ))\mathrm {d}v-\sum _{m=1}^{\mathcal {N}}\xi _m^k\sum _{s=1}^{n}b_{ks}^3\int _{t-\iota (t)}^{t}f_3^s(z_i^s(v,\varsigma ))\mathrm {d}v \notag \\ &+ \sum _{\eta =1}^{\sigma } \sum _{j=1}^{\mathcal {N}} c^\eta g_{ij}^\eta \gamma ^{\eta }_{k} z_j^{k}(t,\varsigma ) +\bar {\omega }_i^k(t,\varsigma ) +u_i^k(t,\varsigma )-\sum _{m=1}^{\mathcal {N}} \xi _m^k u_m^{k}(t,\varsigma )\Big ]\mathrm {d}\varsigma .\end {align}


\begin {align}\label {eq:dU-D} & \sum _{i=1}^{\mathcal {N}}\sum _{k=1}^{n}\xi _i^k\int _{\underline {\alpha }}^{\overline {\alpha }}e_i^k(t,\varsigma )d_k\frac {\partial ^2e_i^k(t,\varsigma )}{\partial \varsigma ^2}\mathrm {d}\varsigma \notag \\ =& \sum _{i=1}^{\mathcal {N}}\sum _{k=1}^{n}e_i^k\xi _i^kd_k\frac {\partial e_i^k(t,\varsigma )}{\partial \varsigma }\Big |_{\underline {\alpha }}^{\overline {\alpha }} - \sum _{i=1}^{\mathcal {N}}\sum _{k=1}^{n} \int _{\underline {\alpha }}^{\overline {\alpha }}\frac {\partial e_i^k(t,\varsigma )}{\partial \varsigma }\xi _i^kd_k\frac {\partial e_i^k(t,\varsigma )}{\partial \varsigma }\mathrm {d}\varsigma \notag \\ =& -\sum _{k=1}^{n}\int _{\underline {\alpha }}^{\overline {\alpha }}d_k{\Big (\frac {\partial e^{(k)}(t,\varsigma )}{\partial \varsigma }\Big )}^T \varLambda ^{(k)} \Big (\frac {\partial e^{(k)}(t,\varsigma )}{\partial \varsigma }\Big ) \mathrm {d}\varsigma \notag \\ =& -\int _{\underline {\alpha }}^{\overline {\alpha }}{\Big (\frac {\partial \hat {e}(t,\varsigma )}{\partial \varsigma }\Big )}^T\varLambda (\mathcal {D}\otimes \textbf {I}_{\mathcal {N}})\Big (\frac {\partial \hat {e}(t,\varsigma )}{\partial \varsigma }\Big )\mathrm {d}\varsigma .\end {align}


\begin {equation*}\begin {aligned} \sum _{i=1}^{\mathcal {N}}\xi _i^ke_i^k(t,\varsigma )=\sum _{i=1}^{\mathcal {N}}\xi _i^k\Big [ z_i^k(t,\varsigma )-\sum _{m=1}^{\mathcal {N}}\xi _m^kz_m^k(t,\varsigma ) \Big ]=0, \end {aligned}\end {equation*}


\begin {align*}& \sum _{i=1}^{\mathcal {N}}\sum _{k=1}^{n}\xi _i^ke_i^k(t,\varsigma )\Big [ \sum _{s=1}^{n}b_{ks}^1f_1^s(\bar {z}^s(t,\varsigma ))-\sum _{m=1}^{\mathcal {N}}\xi _m^k\sum _{s=1}^{n}b_{ks}^1f_1^s(z_m^s(t,\varsigma )) \Big ]=0, \\ & \sum _{i=1}^{\mathcal {N}}\sum _{k=1}^{n}\xi _i^ke_i^k(t,\varsigma )\Big [ \sum _{s=1}^{n}b_{ks}^2f_2^s(\bar {z}^s(\varrho (t),\varsigma ))-\sum _{m=1}^{\mathcal {N}}\xi _m^k\sum _{s=1}^{n}b_{ks}^2f_2^s(z_m^s(\varrho (t),\varsigma )) \Big ]=0, \\ & \sum _{i=1}^{\mathcal {N}}\sum _{k=1}^{n}\xi _i^ke_i^k(t,\varsigma )\int _{t-\iota (t)}^{t}\Big [ \sum _{s=1}^{n}b_{ks}^3f_3^s(\bar {z}^s(v,\varsigma ))-\sum _{m=1}^{\mathcal {N}}\xi _m^k\sum _{s=1}^{n}b_{ks}^3f_3^s(z_m^s(v,\varsigma )) \Big ]\mathrm {d}v=0, \\ & \sum _{i=1}^{\mathcal {N}}\sum _{k=1}^{n}\xi _i^ke_i^k(t,\varsigma ) \Big [ \sum _{m=1}^{\mathcal {N}}\xi _m^ku_m^k(t,\varsigma ) \Big ]=0.\end {align*}


\begin {gather*}\tilde {e}_i(t,\varsigma )=\text {diag}\{\sqrt {\xi _i^n},\dots ,\sqrt {\xi _i^n}\}e_i(t,\varsigma )\in \mathcal {R}^n, \\ \tilde {F}_r(e_i(\cdot ,\varsigma ))=\text {diag}\{\sqrt {\xi _i^n},\dots ,\sqrt {\xi _i^n}\}(f_r(z_i(\cdot ,\varsigma ))-f_r(\bar {z}(\cdot ,\varsigma )))\in \mathcal {R}^n.\end {gather*}


$\varepsilon _i$


$(i\in \overline {1,3})$


\begin {align}& \sum _{k=1}^{n}e_i^k(t,\varsigma )\xi _i^k \sum _{s=1}^{n}b_{ks}^1 \Big [f_1^s(z_i^s(t,\varsigma ))-f_1^s(\bar {z}^s(t,\varsigma ))\Big ] \notag \\ &+ \sum _{k=1}^{n}e_i^k(t,\varsigma )\xi _i^k \sum _{s=1}^{n}b_{ks}^2 \Big [f_2^s(z_i^s(\varrho (t),\varsigma ))-f_2^s(\bar {z}^s(\varrho (t),\varsigma ))\Big ] \notag \\ &+ \sum _{k=1}^{n}e_i^k(t,\varsigma )\xi _i^k \sum _{s=1}^{n}b_{ks}^3 \int _{t-\iota (t)}^{t}\Big [f_3^s(z_i^s(v,\varsigma ))-f_3^s(\bar {z}^s(v,\varsigma ))\Big ]\mathrm {d}v \notag \\ \le & \frac {1}{2\varepsilon _1}\sum _{i=1}^{\mathcal {N}}\tilde {e}_i^T(t,\varsigma )\mathcal {B}_1\mathcal {B}_1^T\tilde {e}_i(t,\varsigma )+\frac {\varepsilon _1L_1}{2}\sum _{i=1}^{\mathcal {N}}\tilde {e}_i^T(t,\varsigma )\tilde {e}_i(t,\varsigma ) \notag \\ &+ \frac {1}{2\varepsilon _2}\sum _{i=1}^{\mathcal {N}}\tilde {e}_i^T(t,\varsigma )\mathcal {B}_2\mathcal {B}_2^T\tilde {e}_i(t,\varsigma )+\frac {\varepsilon _2L_2}{2}\sum _{i=1}^{\mathcal {N}}\tilde {e}_i^T(\varrho (t),\varsigma )\tilde {e}_i(\varrho (t),\varsigma ) \notag \\ &+ \frac {1}{2\varepsilon _3}\sum _{i=1}^{\mathcal {N}}\tilde {e}_i^T(t,\varsigma )\mathcal {B}_3\mathcal {B}_3^T\tilde {e}_i(t,\varsigma )+\frac {\varepsilon _3L_3\bar {\iota }}{2}\sum _{i=1}^{\mathcal {N}} \int _{t-\iota (t)}^{t}{\tilde {e}_i}^T(v,\varsigma ) \tilde {e}_i(v,\varsigma )\mathrm {d}v \notag \\ \le & \frac {1}{2}\hat {e}^T(t,\varsigma )\varLambda (\sum _{r=1}^{3}\frac {1}{\varepsilon _r}\mathcal {B}_r\mathcal {B}_r^T\otimes \textbf {I}_{\mathcal {N}})\hat {e}(t,\varsigma ) + \frac {\varepsilon _1L_1}{2} \hat {e}^T(t,\varsigma )\varLambda \hat {e}(t,\varsigma ) \notag \\ &+ \frac {\varepsilon _2L_2}{2} \hat {e}^T(\varrho (t),\varsigma )\varLambda \hat {e}(\varrho (t),\varsigma ) + \frac {\varepsilon _3L_3\bar {\iota }}{2} \int _{t-\iota (t)}^{t}\hat {e}^T(v,\varsigma )\varLambda \hat {e}(v,\varsigma )\mathrm {d}v.\end {align}


$e_i^k(t,\bar {\varsigma }_p)=e_i^k(t,\varsigma )-\int _{\bar {\varsigma }_p}^{\varsigma }\frac {\partial e_i^k(t,s)}{\partial s}\mathrm {d}s$


$\varsigma _{p+1}-\bar {\varsigma }_p\le \frac {\delta }{2}$


$\bar {\varsigma }_p-\varsigma _p\le \frac {\delta }{2}$


\begin {align}& \sum _{i=1}^{\mathcal {N}}\sum _{k=1}^{n}\int _{\underline {\alpha }}^{\overline {\alpha }} e_i^k(t,\varsigma )\xi _i^k u_i^k(t,\varsigma )\mathrm {d}\varsigma \notag \\ =& -\int _{\underline {\alpha }}^{\overline {\alpha }}\hat {e}^T(t,\varsigma )\varLambda \varpi \hat {e}(t,\varsigma )\mathrm {d}\varsigma + \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {e}^T(t,\varsigma )\varLambda \varpi \left ( \int _{\bar {\varsigma }_p}^{\varsigma }\frac {\partial \hat {e}(t,s)}{\partial s}\mathrm {d}s \right ) \mathrm {d}\varsigma \notag \\ \le & -\int _{\underline {\alpha }}^{\overline {\alpha }}\hat {e}^T(t,\varsigma )\varLambda \varpi \hat {e}(t,\varsigma )\mathrm {d}\varsigma + \sum _{p=0}^{m-1} \frac {\varepsilon _4}{2} \int _{x_p}^{x_{p+1}} \hat {e}^T(t,\varsigma ) \varLambda \varpi \hat {e}(t,\varsigma ) \, \mathrm {d}\varsigma \notag \\ & + \frac {1}{2\varepsilon _4}\sum _{p=0}^{m-1} \int _{\varsigma _p}^{\varsigma _{p+1}} {\Big (\hat {e}(t,\varsigma )-\hat {e}(t,\bar {\varsigma }_p)\Big )}^T \varLambda \varpi \Big (\hat {e}(t,\varsigma )-\hat {e}(t,\bar {\varsigma }_p)\Big ) \mathrm {d}\varsigma \notag \\ =& -\int _{\underline {\alpha }}^{\overline {\alpha }}\hat {e}^T(t,\varsigma )\varLambda \varpi \hat {e}(t,\varsigma )\mathrm {d}\varsigma + \frac {\varepsilon _4}{2} \sum _{p=0}^{m-1} \int _{\varsigma _p}^{\varsigma _{p+1}} \hat {e}^T(t,\varsigma ) \varLambda \varpi \hat {e}(t,\varsigma ) \mathrm {d}\varsigma \notag \\ & + \frac {1}{2 \varepsilon _4}\sum _{p=0}^{m-1} \Bigg [ \int _{\varsigma _p}^{\bar {\varsigma }_p} {\Big ( \hat {e}(t,\varsigma )-\hat {e}(t,\bar {\varsigma }_p) \Big )}^T \varLambda \varpi \Big ( \hat {e}(t,\varsigma )-\hat {e}(t,\bar {\varsigma }_p) \Big ) \mathrm {d}\varsigma \notag \\ & + \int _{\bar {\varsigma }_p}^{\varsigma _{p+1}} {\Big ( \hat {e}(t,\varsigma )-\hat {e}(t,\bar {\varsigma }_p) \Big )}^T \varLambda \varpi \Big ( \hat {e}(t,\varsigma )-\hat {e}(t,\bar {\varsigma }_p) \Big ) \mathrm {d}\varsigma \Bigg ] \notag \\ \le &- (1-\frac {\varepsilon _4}{2}) \int _{\underline {\alpha }}^{\overline {\alpha }} \hat {e}^T(t,\varsigma ) \varLambda \varpi \hat {e}(t,\varsigma )\mathrm {d}\varsigma \notag \\ &+ \frac {1}{2\varepsilon _4}\sum _{p=0}^{m-1} \Bigg [ \frac {4(\bar {\varsigma }_p-\varsigma _p)^2}{\pi ^2}\int _{\varsigma _p}^{\bar {\varsigma }_p} {\Big ( \frac {\partial \hat {e}(t,\varsigma )}{\partial \varsigma } \Big )}^T \varLambda \varpi \frac {\partial \hat {e}(t,\varsigma )}{\partial \varsigma } \mathrm {d}\varsigma \notag \\ &+\frac {4(\varsigma _{p+1}-\bar {\varsigma }_p)^2}{\pi ^2}\int _{\bar {\varsigma }_p}^{\varsigma _{p+1}} {\Big ( \frac {\partial \hat {e}(t,\varsigma )}{\partial \varsigma } \Big )}^T \varLambda \varpi \frac {\partial \hat {e}(t,\varsigma )}{\partial \varsigma } \mathrm {d}\varsigma \Bigg ] \notag \\ \le &- (1- \frac {\varepsilon _4}{2} ) \int _{\underline {\alpha }}^{\overline {\alpha }} \hat {e}^T(t,\varsigma ) \varLambda \varpi \hat {e}(t,\varsigma )\mathrm {d}\varsigma \notag \\ &+ \frac {\delta ^2}{2\varepsilon _4\pi ^2} \int _{\underline {\alpha }}^{\overline {\alpha }} {\Big (\frac {\partial \hat {e}(t,\varsigma )}{\partial \varsigma }\Big )}^T \varLambda \varpi \frac {\partial \hat {e}(t,\varsigma )}{\partial \varsigma } \mathrm {d}\varsigma . \label {neq:control1}\end {align}


$C_2$


\begin {align}& -\int _{\underline {\alpha }}^{\overline {\alpha }}\frac {\partial {\hat {e}}^T(t,\varsigma )}{\partial {\varsigma }}\varLambda \Big [\mathcal {D}\otimes \textbf {I}_{\mathcal {N}}-\frac {\delta ^2}{2\varepsilon _4\pi ^2}\varpi \Big ]\frac {\partial {\hat {e}(t,\varsigma )}}{\partial {\varsigma }}\mathrm {d} \varsigma \notag \\ \le & -\frac {1}{(\overline {\alpha }-\underline {\alpha })^2} \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {e}^T(t,\varsigma )\varLambda \Big [\pi ^2\mathcal {D}\otimes \textbf {I}_{\mathcal {N}}-\frac {\delta ^2}{2\varepsilon _4}\varpi \Big ]\hat {e}(t,\varsigma )\mathrm {d} \varsigma . \label {eq:comb}\end {align}


\begin {align}\dot {\mathcal {U}}(t) \le & \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {e}^T(t,\varsigma ) \Bigg \{ [\varLambda \mathcal {G}]^s- \varLambda \Bigg [ \Bigg ( \frac {\pi ^2}{(\overline {\alpha }-\underline {\alpha })^2}\mathcal {D}+\mathcal {A}-\sum _{r=1}^{3}\frac {\mathcal {B}_r\mathcal {B}_r^T }{2\varepsilon _r} -\frac {\varepsilon _1L_1}{2} \textbf {I}_n \Bigg ) \otimes \textbf {I}_{\mathcal {N}} \Bigg ] \notag \\ &- \Big (1-\frac {\varepsilon _4}{2}-\frac {\delta ^2}{2\varepsilon _4(\overline {\alpha }-\underline {\alpha })^2}\Big )\varLambda \varpi \Bigg \}\hat {e}(t,\varsigma )\mathrm {d}\varsigma + \frac {\varepsilon _2L_2}{2}\int _{\underline {\alpha }}^{\overline {\alpha }}\hat {e}^T(\varrho (t),\varsigma )\varLambda \hat {e}(\varrho (t),\varsigma )\mathrm {d}\varsigma \notag \\ &+ \frac {\varepsilon _3L_3\bar {\iota }}{2}\int _{\underline {\alpha }}^{\overline {\alpha }}\int _{t-\iota (t)}^{t}\hat {e}^T(v,\varsigma )\varLambda \hat {e}(v,\varsigma )\mathrm {d}v\mathrm {d}\varsigma + \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {e}^T(t,\varsigma )\varLambda \hat {\omega }(t,\varsigma )\mathrm {d}\varsigma . \label {eq:Ufangsuo}\end {align}


\begin {align*}\dot {V}(t) =& \dot {\mathcal {U}}(t)+\eta _1\mathcal {U}(t) -\eta _1\dot {\varrho }(t)\mathcal {U}(\varrho (t)) +\eta _2\Big ( \bar {\iota } \mathcal {U}(t) - \int _{t-\bar {\iota }}^t \mathcal {U}(v) \mathrm {d}v\Big ) \\ \le & \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {e}^T(t,\varsigma ) \Bigg \{ [\varLambda \mathcal {G}]^s- \varLambda \Bigg [ \Bigg ( \frac {\pi ^2}{(\overline {\alpha }-\underline {\alpha })^2}\mathcal {D}+\mathcal {A}-\frac {1}{2}\sum _{r=1}^{3}\frac {1}{\varepsilon _r}\mathcal {B}_r\mathcal {B}_r^T \notag \\ & -\frac {\varepsilon _1L_1 + \eta _1+\eta _2\bar {\iota }}{2}\textbf {I}_n \Bigg ) \otimes \textbf {I}_{\mathcal {N}} \Bigg ] -\Big (1-\frac {\varepsilon _4}{2}-\frac {\delta ^2}{2\varepsilon _4(\overline {\alpha }-\underline {\alpha })^2}\Big )\varLambda \varpi \Bigg \}\hat {e}(t,\varsigma )\mathrm {d}\varsigma \notag \\ & +\Big (\frac {\varepsilon _2L_2}{2}-\frac {\eta _1\dot {\varrho }(t)}{2}\Big )\int _{\underline {\alpha }}^{\overline {\alpha }}\hat {e}^T(\varrho (t),\varsigma )\varLambda \hat {e}(\varrho (t),\varsigma )\mathrm {d}\varsigma \notag \\ &+ \Big (\frac {\varepsilon _3L_3\bar {\iota }}{2}-\frac {\eta _2}{2}\Big )\int _{\underline {\alpha }}^{\overline {\alpha }}\int _{t-\iota (t)}^{t}\hat {e}^T(v,\varsigma )\varLambda \hat {e}(v,\varsigma )\mathrm {d}v\mathrm {d}\varsigma \\ &+ \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {e}^T(t,\varsigma )\varLambda \hat {\omega }(t,\varsigma )\mathrm {d}\varsigma \notag \\ \le & \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {e}^T(t,\varsigma ) \Psi \hat {e}(t,\varsigma )\mathrm {d}\varsigma +\int _{\underline {\alpha }}^{\overline {\alpha }}\hat {e}^T(t,\varsigma )\varLambda \hat {\omega }(t,\varsigma )\mathrm {d}\varsigma .\end {align*}


\begin {align}&\dot {V}(t) - \int _{\underline {\alpha }}^{\overline {\alpha }} \hat {y}^T(t,\varsigma )\mathcal {H}\hat {\omega }(t,\varsigma )\mathrm {d}\varsigma +\int _{\underline {\alpha }}^{\overline {\alpha }}\hat {\omega }^T(t,\varsigma )\mathcal {H}_1\hat {\omega }(t,\varsigma )\mathrm {d}\varsigma +\int _{\underline {\alpha }}^{\overline {\alpha }} \hat {y}^T(t,\varsigma )\mathcal {H}_2\hat {y}(t,\varsigma )\mathrm {d}\varsigma \notag \\ \le & \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {e}^T(t,\varsigma ) {\Big [\Psi -\mathcal {P}^T\mathcal {H}_2\mathcal {P} \Big ]}^s\hat {e}(t,\varsigma )\mathrm {d}\varsigma \notag \\ &+ \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {e}^T(t,\varsigma )\Big ( \frac {1}{2}\varLambda + \mathcal {P}^T[\mathcal {H}_2]^s\mathcal {Q} -\frac {1}{2}\mathcal {P}^T\mathcal {H} \Big )\hat {\omega }(t,\varsigma )\mathrm {d}\varsigma \notag \\ &+ \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {\omega }^T(t,\varsigma )\Big ( \frac {1}{2}\varLambda + \mathcal {Q}^T[\mathcal {H}_2]^s\mathcal {P} -\frac {1}{2}\mathcal {H}^T\mathcal {P} \Big )\hat {e}(t,\varsigma )\mathrm {d}\varsigma \notag \\ &+ \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {\omega }^T(t,\varsigma )\mathrm {d}\varsigma \Big ( \mathcal {Q}^T[\mathcal {H}_2]^s\mathcal {Q} +[\mathcal {H}_1]^s -[\mathcal {Q}^T\mathcal {H}]^s \Big ) \hat {\omega }(t,\varsigma )\mathrm {d}\varsigma \notag \\ =& \int _{\underline {\alpha }}^{\overline {\alpha }} \mathbf {E}^T(t,\varsigma ) \Xi \mathbf {E}(t,\varsigma )\mathrm {d}\varsigma , \label {eq:dVfangsuo}\end {align}


$\mathbf {E}(t,\varsigma ) = ( \hat {e}^T(t,\varsigma ),\hat {\omega }^T(t,\varsigma ) )^T$


$C_1$


\begin {align*}\dot {V}(t) \le & \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {y}^T(t,\varsigma )\mathcal {H}\hat {\omega }(t,\varsigma )\mathrm {d}\varsigma - \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {\omega }^T(t,\varsigma )\mathcal {H}_1\hat {\omega }(t,\varsigma )\mathrm {d}\varsigma - \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {y}^T(t,\varsigma )\mathcal {H}_2\hat {y}(t,\varsigma )\mathrm {d}\varsigma .\end {align*}


$\varepsilon _i>0$


$(i\in \overline {1,4})$


$\mathcal {H}\in \mathcal {R}^{p\mathcal {N}\times n\mathcal {N}}$


$0<\mathcal {H}_1\in \mathcal {R}^{n\mathcal {N}\times n\mathcal {N}}$


\begin {align*}\tilde {\Xi } = \begin {pmatrix} [\Psi ]^s & \tilde {\Sigma } \\ \tilde {\Sigma }^T & \tilde {\Delta } \\ \end {pmatrix} \le 0, \quad \frac {\delta ^2}{2\varepsilon _4\pi ^2}\varpi - \mathcal {D}\otimes \textbf {I}_{\mathcal {N}}\le 0,\end {align*}


$\tilde {\Sigma }=\frac {1}{2}\varLambda -\frac {1}{2}\mathcal {P}^T\mathcal {H}$


$\tilde {\Delta } = [\mathcal {H}_1]^s - [\mathcal {Q}^T\mathcal {H}]^s$


$\varepsilon _i>0$


$(i\in \overline {1,4})$


$\mathcal {H}\in \mathcal {R}^{p\mathcal {N}\times n\mathcal {N}}$


$0<\mathcal {H}_2\in \mathcal {R}^{p\mathcal {N}\times p\mathcal {N}}$


\begin {align*}&\hat {\Xi } = \begin {pmatrix} \Upsilon & \Sigma \\ \Sigma ^T & \hat {\Delta } \\ \end {pmatrix} \le 0, \quad \frac {\delta ^2}{2\varepsilon _4\pi ^2}\varpi - \mathcal {D}\otimes \textbf {I}_{\mathcal {N}}\le 0,\end {align*}


$\hat {\Delta } = \mathcal {Q}^T[\mathcal {H}_2]^s\mathcal {Q} -[\mathcal {Q}^T\mathcal {H}]^s$


$\varpi _i$


$i\in \overline {1,\mathcal {N}}$


$\mathcal {H}$


$\mathcal {H}1$


$\mathcal {H}_2$


$\varepsilon _1$


$\varepsilon _2$


$\varepsilon _3$


$\varepsilon _4$


$\Xi \le 0$


\begin {equation*}\Delta <0 ~~\text {and}~~R-\Sigma \Delta ^{-1}\Sigma ^T\leq 0.\end {equation*}


$\varpi _i$


$\Xi \leq 0$


$\varepsilon _r$


$r\in \overline {1,4}$


$\delta $


$C_2$


\begin {equation*}\lim _{t\to +\infty }\|e_i(t,\cdot )\|_{[\underline {\alpha },\overline {\alpha }]}=0, \quad i\in \overline {1,\mathcal {N}}.\end {equation*}


$\hat {\omega }(t,\varsigma )\equiv \textbf {0}{n\mathcal {N}}$


$\mathcal {P}^T[\mathcal {H}_2]^s\mathcal {P} > 0$


$V(t)$


\begin {align*}\dot {V}(t) \le & \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {y}^T(t,\varsigma )\mathcal {H}\hat {\omega }(t,\varsigma )\mathrm {d}\varsigma - \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {\omega }^T(t,\varsigma )\mathcal {H}_1\hat {\omega }(t,\varsigma )\mathrm {d}\varsigma - \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {y}^T(t,\varsigma )\mathcal {H}_2\hat {y}(t,\varsigma )\mathrm {d}\varsigma .\end {align*}


$\hat {\omega }(t,\varsigma )=\textbf {0}_{n\mathcal {N}}$


\begin {equation*}\dot {V}(t) \le -\int _{\underline {\alpha }}^{\overline {\alpha }}\hat {e}^T(t,\varsigma ) \mathcal {P}^T {[\mathcal {H}_2]}^s \mathcal {P} \hat {e}(t,\varsigma )\mathrm {d}\varsigma <0,\end {equation*}


$\hat {\omega }(t,\varsigma )\equiv \textbf {0}{n\mathcal {N}}$


$\varepsilon _i>0$


$(i\in \overline {1,4})$


$\Psi < 0$


$\frac {\delta ^2}{2\varepsilon _4\pi ^2}\varpi - \mathcal {D}\otimes \textbf {I}_{\mathcal {N}}\le 0$


$\Psi <0$


\begin {align*}\dot {V}(t) \le & \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {e}^T(t,\varsigma ) \Psi \hat {e}(t,\varsigma )\mathrm {d}\varsigma <0,\end {align*}


$\varpi $


$C_1$


\begin {align}\label {eq:controller2} \begin {cases} u_i^k(t,\varsigma ) = -\varpi _i(t,\varsigma )e_i^k(t,\bar {\varsigma }_p), \\ \frac {\partial \varpi _i(t,\varsigma )}{\partial t} = \delta _i e^{\beta t} \sum \limits _{k=1}^{n}\xi _i^k e_i^k(t,\varsigma ) e_i^k(t,\bar {\varsigma }_p), \end {cases}\end {align}


$i\in \overline {1,\mathcal {N}}$


$\varpi _i(0,\varsigma )\ge 0$


$\bar {\varsigma }_p=\frac {\varsigma _p+\varsigma _{p+1}}{2}$


$\varsigma \in [\varsigma _p,\varsigma _{p+1}), p\in \overline {0,m-1}$


$k\in \overline {1,n}$


$\delta _i$


$\beta >0$


$\frac {\partial \varpi _i(t,\varsigma )}{\partial t}=e^T_i(t,\varsigma ) e_i(t,\varsigma )$


$\hat {\omega }(t,\varsigma ) \equiv \mathbf {0}{n\mathcal {N}}$


\begin {align}\mathcal {W}(t)=\mathcal {V}(t)+ R(t), \label {eq:W}\end {align}


\begin {align*}\mathcal {V}(t) &= e^{\beta t}\mathcal {U}(t) + \eta _1 e^{\beta \bar {\varrho }} \int _{\varrho (t)}^{t} e^{\beta v} \mathcal {U}(v) \mathrm {d}v +\eta _2 e^{\beta \bar {\iota }} \int _{-\bar {\iota }}^{0} \Big [ \int _{t+\theta }^{t} e^{\beta v} \mathcal {U}(v) \mathrm {d}v \Big ] \mathrm {d}\theta , \notag \\ R(t)&=\sum _{i=1}^{\mathcal {N}}\frac {1}{2\delta _i}\int _{\underline {\alpha }}^{\overline {\alpha }}{\Big (\varpi _i(t,\varsigma )-\varpi _i^*\Big )}^2\mathrm {d}\varsigma ,\end {align*}


$\eta _1=\frac {\varepsilon _2L_2}{\hat {\varrho }}$


$\eta _2=\varepsilon _3L_3\bar {\iota }$


$\mathcal {U}(t)$


$\varpi _i^*>0$


$\hat {\omega }(t,\varsigma ) \equiv \mathbf {0}{n\mathcal {N}}$


\begin {align}\dot {\mathcal {U}}(t) \le & \int _{\underline {\alpha }}^{\overline {\alpha }} \hat {e}^T(t, \varsigma ) \Big \{ [\Lambda \mathcal {G}]^s - \Lambda \Big [ \Big ( \mathcal {A} - \sum _{r=1}^3 \frac {\mathcal {B}_r \mathcal {B}_r^T}{2\varepsilon _r} - \frac {\varepsilon _1 L_1}{2} \mathbf {I}_n \Big ) \otimes \mathbf {I}_{\mathcal {N}} \Big ] \Big \} \hat {e}(t, \varsigma ) \mathrm {d}\varsigma \notag \\ &- \int _{\underline {\alpha }}^{\overline {\alpha }} \left ( \frac {\partial \hat {e}(t, \varsigma )}{\partial \varsigma } \right )^T \varLambda (\mathcal {D}\otimes \textbf {I}_{\mathcal {N}}) \left ( \frac {\partial \hat {e}(t, \varsigma )}{\partial \varsigma } \right ) \mathrm {d}\varsigma \notag \\ &- \sum _{i=1}^{\mathcal {N}} \sum _{k=1}^n \int _{\underline {\alpha }}^{\overline {\alpha }} e_i^k(t, \varsigma ) \xi _i^k \varpi _i(t,\varsigma )e_i^k(t,\bar {\varsigma }_p) \mathrm {d}\varsigma + \frac {\varepsilon _2L_2}{2} \int _{\underline {\alpha }}^{\overline {\alpha }} \hat {e}^T(\varrho (t),\varsigma ) \varLambda \hat {e}(\varrho (t),\varsigma ) \mathrm {d}\varsigma \notag \\ &+ \frac {\varepsilon _3L_3\bar {\iota }}{2} \int _{\underline {\alpha }}^{\overline {\alpha }} \int _{t-\bar {\iota }(t)}^{t} \hat {e}^T(v,\varsigma ) \varLambda \hat {e}(v,\varsigma ) \mathrm {d}v \mathrm {d}\varsigma . \label {eq:Utfangsuo}\end {align}


$\bar {\varrho }+\varrho (t)\ge t$


\begin {align}\dot {\mathcal {V}}(t) =& \beta e^{\beta t} \mathcal {U}(t) + e^{\beta t} \dot {\mathcal {U}}(t) + \eta _1 e^{\beta (\bar {\varrho }+t)} \mathcal {U}(t) - \eta _1 e^{\beta (\bar {\varrho }+\varrho (t))} \mathcal {U}(\varrho (t)) \dot {\varrho }(t) \notag \\ &+ \eta _2 \bar {\iota } e^{\beta \bar {\iota }} e^{\beta t} \mathcal {U}(t) - \eta _2 e^{\beta t} \int _{-\bar {\iota }}^{0} e^{\beta (\bar {\iota }+\theta )} \mathcal {U}(t+\theta ) \mathrm {d}\theta \notag \\ \le & e^{\beta t} \Big \{ \dot {\mathcal {U}}(t) + ( \beta + \eta _1 e^{\beta \bar {\varrho }} + \eta _2 \bar {\iota } e^{\beta \bar {\iota }} ) \mathcal {U}(t) - \eta _1 \mathcal {U}(\varrho (t)) \hat {\varrho } - \eta _2 \int _{t-\iota (t)}^{t} \mathcal {U}(v) \mathrm {d}v \Big \} \notag \\ =& e^{\beta t} \Big \{ \dot {\mathcal {U}}(t) + \frac { \beta + \eta _1 e^{\beta \bar {\varrho }} + \eta _2 \bar {\iota } e^{\beta \bar {\iota }} }{2} \int _{\underline {\alpha }}^{\overline {\alpha }} \hat {e}^T(t,\varsigma ) \varLambda \hat {e}(t,\varsigma ) \mathrm {d}\varsigma \notag \\ &- \frac {\eta _1 \hat {\varrho }}{2} \int _{\underline {\alpha }}^{\overline {\alpha }} \hat {e}^T(\varrho (t),\varsigma ) \varLambda \hat {e}(\varrho (t),\varsigma ) \mathrm {d}\varsigma - \frac {\eta _2}{2} \int _{\underline {\alpha }}^{\overline {\alpha }} \int _{t-\iota (t)}^{t} \hat {e}^T(v,\varsigma ) \varLambda \hat {e}(v,\varsigma ) \mathrm {d}v \mathrm {d}\varsigma \Big \}. \label {eq:dVcal}\end {align}


\begin {align}\dot {\mathcal {W}}(t) \leq & e^{\beta t} \Bigg \{ \int _{\underline {\alpha }}^{\overline {\alpha }} \hat {e}^T(t, \varsigma ) \Big \{ [\Lambda \mathcal {G}]^s - \Lambda \Big [ \Big ( \mathcal {A} - \sum _{r=1}^3 \frac {\mathcal {B}_r \mathcal {B}_r^T}{2\varepsilon _r} - \big (\frac {\varepsilon _1 L_1 + \beta + L_3 e^{\beta \bar {\iota }} \bar {\iota }^2 }{2} \notag \\ &+ \frac {\varepsilon _2L_2 e^{\beta \bar {\varrho }}}{2\hat {\varrho }} \big ) \mathbf {I}_n \Big ) \otimes \mathbf {I}_{\mathcal {N}} \Big ] \Big \} \hat {e}(t, \varsigma ) \mathrm {d}\varsigma - \int _{\underline {\alpha }}^{\overline {\alpha }} \left ( \frac {\partial \hat {e}(t, \varsigma )}{\partial \varsigma } \right )^T \varLambda (\mathcal {D}\otimes \textbf {I}_{\mathcal {N}}) \left ( \frac {\partial \hat {e}(t, \varsigma )}{\partial \varsigma } \right ) \mathrm {d}\varsigma \notag \\ &- \varpi ^* \sum _{i=1}^{\mathcal {N}} \sum _{k=1}^{n} \int _{\underline {\alpha }}^{\overline {\alpha }} \xi _i^k e_i^k(t,\varsigma ) e_i^k(t,\bar {\varsigma }_p) \mathrm {d}\varsigma \Bigg \}. \label {eq:dW1}\end {align}


\begin {align}& - \varpi ^* \sum _{i=1}^{\mathcal {N}} \sum _{k=1}^n \int _{\underline {\alpha }}^{\overline {\alpha }} \xi _i^k e_i^k(t, \varsigma ) e_i^k(t, \bar {\varsigma }_p) \mathrm {d}\varsigma \notag \\ \le & - \varpi ^* (1-\frac {\varepsilon _4}{2})\int _{\underline {\alpha }}^{\overline {\alpha }} \hat {e}^T(t,\varsigma ) \varLambda \hat {e}(t,\varsigma ) \mathrm {d}\varsigma + \frac {\delta ^2\varpi ^*}{2\varepsilon _4\pi ^2}\int _{\underline {\alpha }}^{\overline {\alpha }} \left (\frac {\partial \hat {e}(t,\varsigma )}{\partial \varsigma }\right )^T \varLambda \frac {\partial \hat {e}(t,\varsigma )}{\partial \varsigma }. \label {eq:u2}\end {align}


\begin {align*}\dot {\mathcal {W}}(t) \le & e^{\beta t} \int _{\underline {\alpha }}^{\overline {\alpha }} \hat {e}^T(t, \varsigma ) \Upsilon _1 \hat {e}(t, \varsigma ) \mathrm {d}\varsigma + e^{\beta t} \int _{\underline {\alpha }}^{\overline {\alpha }} \left ( \frac {\partial \hat {e}(t, \varsigma )}{\partial \varsigma } \right )^T \Upsilon _2 \left ( \frac {\partial \hat {e}(t, \varsigma )}{\partial \varsigma } \right ) \mathrm {d}\varsigma \notag \\ =&e^{\beta t} \int _{\underline {\alpha }}^{\overline {\alpha }}\tilde {\mathbf {E}}^T(t,\varsigma )\varTheta \tilde {\mathbf {E}}(t,\varsigma )\mathrm {d}\varsigma ,\end {align*}


$\tilde {\mathbf {E}}(t,\varsigma )={\Big ( \hat {e}(t,\varsigma ),\frac {\partial \hat {e}(t,\varsigma )}{\partial t}\Big )}^T$


$\Upsilon _2= \varLambda \Big [\Big ( \frac {\delta ^2\varpi ^*}{2\varepsilon _4\pi ^2} \textbf {I}_n-\mathcal {D}\Big ) \otimes \textbf {I}_{\mathcal {N}}\Big ]$


$\Upsilon _1=[\Lambda \mathcal {G}]^s - \Lambda \Big [ \Big ( \mathcal {A} - \sum _{r=1}^3 \frac {\mathcal {B}_r \mathcal {B}_r^T}{2\varepsilon _r}- \big [\frac {\varepsilon _1 L_1 + \beta + \varepsilon _3 L_3 e^{\beta \bar {\iota }} \bar {\iota }^2 }{2} + \frac {\varepsilon _2L_2 e^{\beta \bar {\varrho }}}{2\hat {\varrho }} - (1-\frac {\varepsilon _4}{2}) \varpi ^* \big ] \mathbf {I}_n \Big ) \otimes \mathbf {I}_{\mathcal {N}} \Big ]$


\begin {align*}&\varTheta = \begin {pmatrix} \Upsilon _1 & 0 \\ 0 & \Upsilon _2 \end {pmatrix}.\end {align*}


$\varpi ^*$


$\varepsilon _1$


$\varepsilon _2$


$\varepsilon _3$


$\varepsilon _4$


$\varTheta \le 0$


$\dot {\mathcal {W}}(t)\le 0$


$\mathcal {W}(t)\le \mathcal {W}(0)$


\begin {align}\mathcal {W}(t)\ge \mathcal {V}(t) \ge e^{\beta t} \frac {\lambda _{\min }(\varLambda )}{2} \|e(t,\cdot )\|_{[\underline {\alpha },\overline {\alpha }]}^2. \label {eq:WTfangxiao}\end {align}


\begin {equation*}\|e(t,\cdot )\|_{[\underline {\alpha },\overline {\alpha }]} \le \kappa \sqrt {\mathcal {W}(0)} e^{-\frac {\beta }{2}t}, \quad t\ge 0,\end {equation*}


$\kappa =\sqrt {\frac {2}{\lambda _{\min }(\varLambda )}}$


$\mathcal {W}(t)$


$e^{\beta t}$


$3$


$t\in \mathcal {R}{\ge 0}$


$\varsigma \in [-5,5]$


$\mathcal {D}=\mathcal {A}=0.6\textbf {I}3$


$c^1=c^3=0.1$


$c^2=0.2$


$\Gamma ^1=\mathrm {diag}\{0.1,0.2,0.1\}$


$\Gamma ^2=\mathrm {diag}\{0.3,0.2,0.3\}$


$\Gamma ^3=\mathrm {diag}\{0.2,0.1,0.2\}$


$\varsigma \in [-5+0.1p,-5+0.1(p+1)]$


$p\in \overline {0,99}$


\begin {align*}&B_1 = \begin {bmatrix} 1 & 5 & 7 \\ -0.5 & 1 & 1.2 \\ 9 & 4 & -0.8 \end {bmatrix}, &&B_2 = \begin {bmatrix} -0.1 & 3 & 5 \\ -2 & -0.2 & 1 \\ -2 & -5 & -0.1 \end {bmatrix}, &&B_3 = \begin {bmatrix} 0.1 & -3 & -4 \\ 0.2 & 0.3 & -6 \\ 5 & 4 & 0.2 \end {bmatrix}.\end {align*}


$\xi ^{(1)}=\xi ^{(2)}=\xi ^{(3)}=0.2\textbf {1}_5$


$L_1=L_3=1$


$L_2=2$


\begin {align*}\psi _1(t)&=\int _{\underline {\alpha }}^{\overline {\alpha }}\hat {y}^T(t,\varsigma )\mathcal {H}\hat {\omega }(t,\varsigma )\mathrm {d}\varsigma - \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {\omega }^T(t,\varsigma )\mathcal {H}_1\hat {\omega }(t,\varsigma )\mathrm {d}\varsigma - \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {y}^T(t,\varsigma )\mathcal {H}_2\hat {y}(t,\varsigma )\mathrm {d}\varsigma -\dot {V}(t), \\ \psi _2(t)&=\int _{\underline {\alpha }}^{\overline {\alpha }}\hat {y}^T(t,\varsigma )\mathcal {H}\hat {\omega }(t,\varsigma )\mathrm {d}\varsigma - \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {\omega }^T(t,\varsigma )\mathcal {H}_1\hat {\omega }(t,\varsigma )\mathrm {d}\varsigma - \dot {V}(t), \\ \psi _3(t)&=\int _{\underline {\alpha }}^{\overline {\alpha }}\hat {y}^T(t,\varsigma )\mathcal {H}\hat {\omega }(t,\varsigma )\mathrm {d}\varsigma - \int _{\underline {\alpha }}^{\overline {\alpha }}\hat {y}^T(t,\varsigma )\mathcal {H}_2\hat {y}(t,\varsigma )\mathrm {d}\varsigma - \dot {V}(t).\end {align*}


$C_1$


$C_2$


$\varepsilon _1=\varepsilon _2=\varepsilon _3=7$


$\varepsilon _4=2$


\begin {gather*}\mathcal {H} = \begin {bmatrix} 12.5585 & 0.1938 & -0.1117 \\ 0.1938 & 12.1270 & 0.0632 \\ -0.1117 & 0.0632 & 12.7263 \end {bmatrix} \otimes \mathbf {I}_5, \quad \mathcal {H}_1 = \begin {bmatrix} 17.6768 & 0.2102 & -0.1839 \\ 0.2353 & 17.1807 & 0.0642 \\ -0.0729 & 0.0813 & 17.8698 \end {bmatrix} \otimes \mathbf {I}_5, \\ \mathcal {H}_2 = \begin {bmatrix} 1.0974 & -19.8240 & 95.3621 \\ 19.8611 & 1.0562 & 10.5091 \\ 95.3833 & -10.4970 & 1.1134 \end {bmatrix} \otimes \mathbf {I}_5,\end {gather*}


$\varpi =12.2429\textbf {I}_5$


$\psi _1(t)$


$e_i^k(t,\varsigma )$


$\mathcal {H}_2=\textbf {0}_{15}$


$\varepsilon _1=\varepsilon _3=9$


$\varepsilon _2=6$


$\varepsilon _4=0.8$


$\mathcal {H}, \mathcal {H}_1$


\begin {align*}\mathcal {H}= \begin {bmatrix} 0.1648 & -0.0692 & 0.0493 \\ -0.0692 & 0.3336 & -0.0254 \\ 0.0493 & -0.0254 & 0.1136 \end {bmatrix} \otimes \textbf {I}_5, \quad \mathcal {H}_1= \begin {bmatrix} 0.3278 & 31.5829 & 37.4941 \\ -31.8403 & 0.6412 & -20.3522 \\ -37.3136 & 20.2572 & 0.2337 \end {bmatrix} \otimes \textbf {I}_5,\end {align*}


$\varpi =36.1213\textbf {I}_5$


$\psi _2(t)$


$e_i^k(t,\varsigma )$


$\mathcal {H}_1=\textbf {0}_{15}$


$\varepsilon _1=3$


$\varepsilon _2=6$


$\varepsilon _3=2$


$\varepsilon _4=1.7$


$\mathcal {H}$


$\mathcal {H}_2$


\begin {align*}\mathcal {H} &= \begin {bmatrix} 8.0862 & 0.9488 & -0.4061 \\ 0.9488 & 6.7500 & 0.2155 \\ -0.4061 & 0.2155 & 8.9455 \end {bmatrix} \otimes \textbf {I}_5, \quad \mathcal {H}_2 = \begin {bmatrix} 0.7562 & 898.0732 & 455.6378 \\ -897.8896 & 0.6270 & -4.8870 \\ -455.7162 & 4.9288 & 0.8392 \end {bmatrix} \otimes \textbf {I}_5.\end {align*}


$\varpi =11.4197\textbf {I}_5$


$\psi _3(t)$


$e_i^k(t,\varsigma )$


$e_i^k(t,\varsigma )$


$\hat {\omega }(t,\varsigma )\equiv \textbf {0}_{15}$


$\beta =0.001$


$\delta _i=5$


$\varpi _i(t,\varsigma )$


$[0,10]$


$i\in \overline {1,5}$


$(t,\varsigma )\in [-0.75,0]\times (-5,5)$


$\hat {\omega }(t,\varsigma )\equiv \textbf {0}_{15}$


$\varpi _i(t,\varsigma )$


$\varpi _i(t,\varsigma )$


$i\in \overline {1,5}$


$\bar {z}$


$T0=5$


$I_0$


$256 \times 256$


$I_0$


$A(h, j)$


$B(h, j)$


$C(h, j)$


$h \in \overline {1,256}$


$j \in \overline {1,256}$


$x, y, z$


\begin {equation*}X=10000(x+5), Y=10000(y+5), Z=10000(z+5).\end {equation*}


$X,Y,Z$


$X_0,Y_0,Z_0$


$\textit {im2uint8}$


\begin {equation*}X_0=\textit {im2uint8}(X),\ Y_0=\textit {im2uint8}(Y),\ Z_0=\textit {im2uint8}(Z).\end {equation*}


$X$


$Y$


$Z$


$l_x,l_y,l_z$


$A,B,C$


$A_1,B_1,C_1$


\begin {equation*}A_1 = \text {reshape}(A, 1, n\mathcal {N}),\ B_1 = \text {reshape}(B, 1, n\mathcal {N}),\ C_1 = \text {reshape}(C, 1, n\mathcal {N}).\end {equation*}


\begin {equation*}A_2=A_1\oplus X_0,\ B_2=B_1\oplus Y_0,\ C_2=C_1\oplus Z_0.\end {equation*}


$A_2, B_2, C_2$


$l_x,l_y,l_z$


$I_1$


\begin {equation*}A_3=\text {reshape}(A_2,n,\mathcal {N}),\ B_3=\text {reshape}(B_2,n,\mathcal {N}),\ C_3=\text {reshape}(C_2,n,\mathcal {N}).\end {equation*}


$I_1$


$I_1$


$A_4(h, j)$


$B_4(h, j)$


$C_4(h, j)$


$h \in \overline {1,256}$


$j \in \overline {1,256}$


$x_1, y_1, z_1$


\begin {equation*}X_1=10000(x_1+5),\ Y_1=10000(y_1+5),\ Z_1=10000(z_1+5).\end {equation*}


$X_1$


$Y_1$


$Z_1$


$X_0^{(1)},Y_0^{(1)},Z_0^{(1)}$


$\textit {im2uint8}$


\begin {equation*}X_0^{(1)}=\textit {im2uint8}(X_1),\ Y_0^{(1)}=\textit {im2uint8}(Y_1),\ Z_0^{(1)}=\textit {im2uint8}(Z_1).\end {equation*}


$X_1,Y_1,Z_1$


$l_x^{(1)},l_y^{(1)},l_z^{(1)}$


$A_4,B_4,C_4$


\begin {equation*}A_5 = \text {reshape}(A_4, 1, n\mathcal {N}),\ B_5 = \text {reshape}(B_4, 1, n\mathcal {N}),\ C_5 = \text {reshape}(C_4, 1, n\mathcal {N}).\end {equation*}


\begin {equation*}A_6=A_5\oplus X_0^{(1)},\ B_6=B_5\oplus Y_0^{(1)},\ C_6=C_5\oplus Z_0^{(1)}.\end {equation*}


$A_6, B_6, C_6$


$l_x^{(1)}$


$l_y^{(1)}$


$l_z^{(1)}$


$I_3$


\begin {equation*}A_7=\text {reshape}(A_6,n,\mathcal {N}),\ B_7=\text {reshape}(B_6,n,\mathcal {N}),\ C_7=\text {reshape}(C_6,n,\mathcal {N}).\end {equation*}
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Consequently, passivity provides a powerful criterion for guaranteeing the intrinsic stability of systems [11]. Given its widespread 
utility in diverse domains such as mechanical systems and power networks, the passivity of CNNs has garnered growing interest, 
and a large number of excellent achievements have emerged [12–15]. Wang et al. [12] conducted a rigorous passivity analysis for 
CNNs with multi-weighted couplings, and passivity conditions were derived for systems with mismatched input-output dimensions. 
By employing the variable rearrange order technique, Lin and Liu addressed the passivity and control of multi-coupled dynamical 
networks [14].

Note that, the above considerable efforts are mainly devoted to CNNs modeled by ordinary differential systems, where the dynamic 
evolution merely depends on the time. However, these models neglect the spatial evolution of neurons and are unable to accurately 
explain the flow of neuronal information as well as the inter-layer information exchange among neurons in biological systems [16,17]. 
To accurately depict the spatiotemporal dynamics and interactions of neurons, the reaction-diffusion term is introduced into CNNs. 
Recently, passivity analysis and passivity-based control of reaction-diffusion neural networks (RDNNs) have been increasingly re-
ported [18–21]. In [18], by establishing the definition of fixed-time passivity, some fixed-time passification conditions for memristive 
reaction-diffusion neural networks were obtained via nonlinear full-domain control. In practice, time delays are inevitable due to the 
limited bandwidth and the constrained transmission speed during information transmission [20]. In view of this, based on Lyapunov 
Krasovskii functionals method, Huang et al. [21] explored the passivity of multi-weighted RDNNs with time-varying delays via full-
domain event-triggered controller. In [22], the input and output passivity of RDNNs with multi-proportional delays was addressed 
by constructing a Lyapunov Krasovskii functional. More importantly, Wang et al. [23,24] further extended the theory of passivity to 
investigate the synchronization of CNNs. Specifically, the synchronization problem of CNNs was reformulated as the stability analysis 
of an error system. When the external input is removed, the original CNNs achieves synchronization if the error system exhibits 
output-strict passivity. Since the concept of output-strict passivity was introduced, the problem of passivity-based control for syn-
chronization of RDNNs has received considerable attention [25–27]. In [25], an adaptive pinning controller was designed to realize 
both passivity and synchronization in fractional spatiotemporal networks. Considering time delay and parameter uncertainties, Lin et 
al. studied passivity and synchronization of multiple-weighted RDNNs by designing an event-triggered controller in [26]. Note that, 
the aforementioned studies are exclusively concentrated on RDNNs characterized by the single time delay. However, in practical 
engineering and technical fields, a system may be simultaneously affected by multiple time-delay factors, such as constant delay, 
time-varying delay, distributed delay, and proportional delay [28–31]. Unfortunately, integrating these time delays into a unified 
system model and analyzing passivity and synchronization for RDNNs with multiple delays remain a challenging task.

It is important to highlight that the aforementioned passivity-based controllers require actuators to be distributed throughout the 
entire interior space domain. This requirement ensures that control actions can be applied continuously across the spatial dimension, 
which often involves high costs and technical challenges in the engineering implementation. For example, in large-scale systems 
such as the control of concentration and temperature in chemical reactors or the installation of traffic signal lights and surveillance 
equipment in the transportation network, it is difficult to achieve full-domain control due to technical or economic limitations. In 
contrast, spatial sampled-data control can achieve the desired control objective by distributing actuators at specific spatial points 
rather than across the entire domain [32]. Owing to its significant advantages, including the ease of installation, cost-effectiveness 
and high efficiency, this approach has garnered considerable attention in both academic and practical fields [33–39]. Lu et al. [34] 
developed a kind of spacial sampled-data controller for 𝐻∞ output synchronization of RDNNs with discrete and distributed delays, 
in which the actuators are placed at the midpoint of each sampling interval. In [35] and [36], a spatial sampled-data controller 
was presented to realize synchronization of RDNNs with and without mixed delays, and several consitions formed by linear matrix 
inequalities (LMI) were derived by constructing a Lyapunov Krasovskii functional. Based on spatially averaged measurements and the 
method of Lyapunov Krasovskii functionals, the dissipativity behavior of delayed RDNNs was analysed via adaptive event-triggered 
sampled-data control in [37]. Unlike the technique of Lyapunov Krasovskii functionals, the cluster synchronization criteria for de-
layed genetic regulatory networks were derived based on Halanay’s inequality under an intermittent space-dividing controller in 
[38]. Compared with the abundant achievements in the sampled-data synchronization of RDNNs, the passivity analysis of delayed 
RDNNs under spatial sampling control has not been systematically and deeply explored. Given the diverse coupling structures and 
complex dynamic behaviors of delayed RDNNs, how to design efficient passivity-based sampling control strategies under spatial point 
measurements, and how to establish the intrinsic relationship between passivity and synchronization, are key scientific issues that 
need to be urgently addressed.

Inspired by the above discussion, the passivity and synchronization of delayed RDNNs with multi-weighted coupling are inves-
tigated in this article. Several sufficient conditions for passivity and synchronization are established by designing spatial sampling 
controllers. The main highlights of this article are summarized as follows.

(1) To capture the influence of different delays on the system and the richness of neural network interactions, a class of RDNNs 
with multi-weighted coupling is formulated which integrates discrete time delays [23,37,38], distributed delays [34,35,40], and 
proportional delays [22,28].

(2) To realize passivity and synchronization, a spatial sampling controller distributed at the midpoint of each sampling interval is 
designed, which is more economical and convenient than the full-domain control presented in [25–27]. To further reduce the control 
gains determined by the LMI condition, an adaptive spatial sampling control strategy is developed to dynamically update the control 
gain and finally achieve asymptotical synchronization.

(3) By constructing some Lyapunov Krasovskii functionals, several passivity and passivity-based synchronization criteria are de-
rived for the RDNNs with mismatched input and output dimensions. In theoretical analysis, the requirement for strong connectivity 
of each coupling layer of communication topology, as considered in [6–8,34], is relaxed to the connectivity about the union graph 
through the variable rearrangement technique.
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Table 1 
Notations and Definitions.
 Notations  Definitions
ℕ+ , 1, ,≥0 ℕ+ = {1, 2,…}, 1, =

{

1, 2,… ,
}

,≥0 = [0,+∞)
𝑛 ,𝑛×𝑚  The space of all 𝑛-dimensional real vectors/𝑛 × 𝑚 real matrices
 > 0(< 0)  The symmetric matrix  is positive definite (negative definite)
[]𝑠 []𝑠 = 𝑇 +

2
‖𝑣‖2 ‖𝑣‖2 =

√

𝑣𝑇 𝑣 with 𝑣 ∈ 𝑛

‖𝑧(𝑡, ⋅)‖[𝛼,𝛼] ‖𝑧(𝑡, ⋅)‖[𝛼,𝛼] = (∫ 𝛼
𝛼 𝑧

𝑇 (𝑡, 𝜍)𝑧(𝑡, 𝜍)d𝜍)
1
2  with 𝛼 < 𝛼̄, 𝑡 ∈ ≥0, 𝑧(𝑡, 𝜍) ∈ 𝑛

0𝑛 ,1𝑛 0𝑛 = (0, 0,… , 0)𝑇 ∈ 𝑛 ,1𝑛 = (1, 1,… , 1)𝑇 ∈ 𝑛

I𝑛 𝑛-order identity matrix

The notations used in this article are provided in Table 1. 

2.  Preparation and problem formation

Consider a kind of multi-weighted coupled reaction-diffusion neural networks with mixed time-varying delay, which is depicted 
as

𝜕𝑧𝑖(𝑡, 𝜍)
𝜕𝑡

=
𝜕2𝑧𝑖(𝑡, 𝜍)
𝜕𝜍2

−𝑧𝑖(𝑡, 𝜍) + 1𝑓1
(

𝑧𝑖(𝑡, 𝜍)
)

+ 2𝑓2
(

𝑧𝑖(𝜚(𝑡), 𝜍)
)

+ 3 ∫

𝑡

𝑡−𝜄(𝑡)
𝑓3
(

𝑧𝑖(𝑣, 𝜍)
)

d𝑣 +
𝜎
∑

𝜂=1


∑

𝑗=1
𝑐𝜂𝑔𝜂𝑖𝑗Γ

𝜂𝑧𝑗 (𝑡, 𝜍)

+ 𝜔𝑖(𝑡, 𝜍) + 𝑢𝑖(𝑡, 𝜍), 𝑖 ∈ 1, , (1)

where 𝑡 ∈ ≥0, 𝜍 ∈ (𝛼, 𝛼), 𝑧𝑖(𝑡, 𝜍) = (𝑧1𝑖 (𝑡, 𝜍), 𝑧
2
𝑖 (𝑡, 𝜍),… , 𝑧𝑛𝑖 (𝑡, 𝜍))

𝑇 ∈ 𝑛 is the state of the 𝑖-th neural network, 𝑓𝑟(𝑧𝑖(⋅)) =
(𝑓 1
𝑟 (𝑧

1
𝑖 (⋅)), 𝑓

2
𝑟 (𝑧

2
𝑖 (⋅)),… , 𝑓 𝑛𝑟 (𝑧

𝑛
𝑖 (⋅)))

𝑇 ∈ 𝑛 is the nonlinear activation function (𝑟 = 1, 2, 3), 𝜔𝑖(𝑡, 𝜍) ∈ 𝑛 is the external input, 𝑢𝑖(𝑡, 𝜍) ∈ 𝑛

is a spatial sampling controller , 𝜚(𝑡) denotes the general time-varying delay, 𝜄(𝑡) represents the distributed time-varying delay, 
 = diag{𝑑1, 𝑑2,… , 𝑑𝑛} > 0 is the diffusion coefficient matrix,  = diag{𝑎1, 𝑎2,… , 𝑎𝑛}, 𝑎𝑘 > 0 denotes the potential decay rate of 
the 𝑘-th neuron toward its resting state, 𝑟 = (𝑏𝑟𝑖𝑗 )𝑛×𝑛 (𝑟 ∈ 1, 3) are the synaptic connection weights between neurons, 𝑐𝜂 > 0 and 
Γ𝜂 = diag{𝛾𝜂1 , 𝛾

𝜂
2 ,… , 𝛾𝜂𝑛 } > 0 are the coupling strength and the inner coupling matrix of the 𝜂-th coupling, respectively. 𝐺𝜂 = (𝑔𝜂𝑖𝑗 )×

represents the outer coupling matrix of the 𝜂-th coupling, where 𝑔𝜂𝑖𝑗 > 0 (𝑖 ≠ 𝑗) if there is communication from node 𝑗 to node 𝑖, 
otherwise, 𝑔𝜂𝑖𝑗 = 0, and 𝑔𝜂𝑖𝑖 = −

∑
𝑗=1,𝑗≠𝑖 𝑔

𝜂
𝑖𝑗 .

Assumption 1.  For any nonlinear function 𝑓𝑟(⋅) ∶ 𝑛 → 𝑛 (𝑟 ∈ 1, 3), there exists a positive constant 𝐿𝑟 such that
‖𝑓𝑟(𝑧) − 𝑓𝑟(𝑧∗)‖2 ≤

√

𝐿𝑟‖𝑧 − 𝑧∗‖2, 𝑧, 𝑧∗ ∈ 𝑛.

Assumption 2.  There exist positive constants 𝜚̂, 𝜚̄ and ̄𝜄 such that
𝑡 ≤ 𝜚(𝑡) + 𝜚̄, 0 < 𝜚̂ ≤ 𝜚̇(𝑡), 𝜄(𝑡) ≤ 𝜄.

The Dirichlet boundary condition and the initial state of system (1) are given as 
{

𝑧𝑖(𝑡, 𝛼) = 𝑧𝑖(𝑡, 𝛼) = 𝟎𝑛, 𝑡 ∈ [−𝜄,+∞),
𝑧𝑖(𝑡, 𝜍) = 𝜙𝑖(𝑡, 𝜍), (𝑡, 𝜍) ∈ [−𝜄, 0] × (𝛼, 𝛼),

(2)

where 𝜄 = max {−𝜚(0), 𝜄} with 𝜚(0) ≤ 0, and 𝜙𝑖(𝑡, 𝜍) = (𝜙1
𝑖 (𝑡, 𝜍), 𝜙

2
𝑖 (𝑡, 𝜍),… , 𝜙𝑛𝑖 (𝑡, 𝜍))

𝑇 ∈ 𝑛 is a continuous function.
Remark 1. Assumption 1 is a common Lipschitz condition, which is used to guarantee the existence of the solution of the system (1). 
The function 𝜚(𝑡) in Assumption 2 represents a generalized form of time-delay. Specifically, if 𝜚(𝑡) = 𝑡 − ℎ(𝑡) with 0 ≤ ℎ(𝑡) ≤ ℎ, then 
𝜚(𝑡) reduces to a discrete time-delay as discussed in [23,37,38]. If 𝜚(𝑡) = 𝑝𝑡 with 0 < 𝑝 < 1, it simplifies to a proportional delay, which 
has been explored in [28]. 

From 𝑧𝑖(𝑡, 𝜍) = (𝑧1𝑖 (𝑡, 𝜍), 𝑧
2
𝑖 (𝑡, 𝜍),… , 𝑧𝑛𝑖 (𝑡, 𝜍))

𝑇 , system (1) is represented in the following scalar form
𝜕𝑧𝑘𝑖 (𝑡, 𝜍)
𝜕𝑡

= 𝑑𝑘
𝜕2𝑧𝑘𝑖 (𝑡, 𝜍)
𝜕𝜍2

− 𝑎𝑘𝑧𝑘𝑖 (𝑡, 𝜍) +
𝑛
∑

𝑠=1
𝑏1𝑘𝑠𝑓

𝑠
1
(

𝑧𝑠𝑖 (𝑡, 𝜍)
)

+
𝑛
∑

𝑠=1
𝑏2𝑘𝑠𝑓

𝑠
2
(

𝑧𝑠𝑖 (𝜚(𝑡), 𝜍)
)

+
𝑛
∑

𝑠=1
𝑏3𝑘𝑠 ∫

𝑡

𝑡−𝜄(𝑡)
𝑓 𝑠3

(

𝑧𝑠𝑖 (𝑣, 𝜍)
)

d𝑣

+
𝜎
∑

𝜂=1


∑

𝑗=1
𝑐𝜂𝑔𝜂𝑖𝑗𝛾

𝜂
𝑘𝑧

𝑘
𝑗 (𝑡, 𝜍) + 𝜔

𝑘
𝑖 (𝑡, 𝜍) + 𝑢

𝑘
𝑖 (𝑡, 𝜍). (3)
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Fig. 1. The joint connectivity.

Define the weighted union matrices (𝑘) ∈ 𝑅×  as

(𝑘) =
𝜎
∑

𝜂=1
𝑐𝜂𝛾𝜂𝑘𝐺

𝜂 , 𝑘 ∈ 1, 𝑛.

Assumption 3.  The communication topology of (𝑘) is strong connected for 𝑘 ∈ 1, 𝑛.

Remark 2. In the existing researches on RDNNs with multiweighted coupling [34], it is conventionally assumed that the communi-
cation topology of each layer’s coupling is strongly connected. However, this study introduces a more relaxed condition. Specifically, 
only the union communication topology of all coupling layers is required to be connected in Assumption 3, as illustrated in Fig. 1, 
which is evidently less conservative. 
Under Assumption 3, (𝑘) has a simple zero eigenvalue and there exists a normalized vector 𝜉(𝑘) = (𝜉𝑘1 , 𝜉

𝑘
2 ,… , 𝜉𝑘 )𝑇 ∈   with 𝜉𝑘𝑚 > 0

(𝑚 ∈ 1, ) satisfying ((𝑘))𝑇 𝜉(𝑘) = 0  and ∑
𝑖=1 𝜉

𝑘
𝑖 = 1. Based on this, define a virtual target as

𝑧̄𝑘(𝑡, 𝜍) =

∑

𝑚=1
𝜉𝑘𝑚𝑧

𝑘
𝑚(𝑡, 𝜍), (𝑡, 𝜍) ∈ ≥0 × (𝛼, 𝛼),

where 𝑧̄𝑘(𝑡, 𝜍) ∈ , 𝑘 ∈ 1, 𝑛, and further denote 𝜑𝑘(𝑡, 𝜍) = ∑
𝑚=1 𝜉

𝑘
𝑚𝜙

𝑘
𝑚(𝑡, 𝜍), (𝑡, 𝜍) ∈ [−𝜄, 0] × (𝛼, 𝛼).

Since (𝑘)𝑇 𝜉(𝑘) = 0 , 
∑𝜎
𝜂=1

∑
𝑚=1 𝑐

𝜂𝛾𝜂𝑘𝑔
𝜂
𝑚𝜉𝑘𝑚 = 0, 𝑚 ∈ 1, , 𝑘 ∈ 1, 𝑛, then

𝜕𝑧̄𝑘(𝑡, 𝜍)
𝜕𝑡

= 𝑑𝑘
𝜕2𝑧̄𝑘(𝑡, 𝜍)
𝜕𝜍2

− 𝑎𝑘𝑧̄𝑘(𝑡, 𝜍) +

∑

𝑚=1
𝜉𝑘𝑚

𝑛
∑

𝑠=1
𝑏1𝑘𝑠𝑓

𝑠
1
(

𝑧𝑠𝑚(𝑡, 𝜍)
)

+

∑

𝑚=1
𝜉𝑘𝑚

𝑛
∑

𝑠=1
𝑏2𝑘𝑠𝑓

𝑠
2
(

𝑧𝑠𝑚(𝜚(𝑡), 𝜍)
)

+

∑

𝑚=1
𝜉𝑘𝑚

𝑛
∑

𝑠=1
𝑏3𝑘𝑠 ∫

𝑡

𝑡−𝜄(𝑡)
𝑓 𝑠3

(

𝑧𝑠𝑚(𝑣, 𝜍)
)

d𝑣

+

∑

𝑚=1
𝜉𝑘𝑚𝜔

𝑘
𝑚(𝑡, 𝜍) +


∑

𝑚=1
𝜉𝑘𝑚𝑢

𝑘
𝑚(𝑡, 𝜍). (4)

Denote the error 𝑒𝑘𝑖 (𝑡, 𝜍) = 𝑧𝑘𝑖 (𝑡, 𝜍) − 𝑧̄
𝑘(𝑡, 𝜍) ∈ , it follows from systems (3) and (4) that

𝜕𝑒𝑘𝑖 (𝑡, 𝜍)
𝜕𝑡

= 𝑑𝑘
𝜕2𝑒𝑘𝑖 (𝑡, 𝜍)
𝜕𝜍2

− 𝑎𝑘𝑒𝑘𝑖 (𝑡, 𝜍)

+
𝑛
∑

𝑠=1
𝑏1𝑘𝑠𝑓

𝑠
1
(

𝑧𝑠𝑖 (𝑡, 𝜍)
)

−

∑

𝑚=1
𝜉𝑘𝑚

𝑛
∑

𝑠=1
𝑏1𝑘𝑠𝑓

𝑠
1
(

𝑧𝑠𝑚(𝑡, 𝜍)
)

+
𝑛
∑

𝑠=1
𝑏2𝑘𝑠𝑓

𝑠
2
(

𝑧𝑠𝑖 (𝜚(𝑡), 𝜍)
)

−

∑

𝑚=1
𝜉𝑘𝑚

𝑛
∑

𝑠=1
𝑏2𝑘𝑠𝑓

𝑠
2
(

𝑧𝑠𝑚(𝜚(𝑡), 𝜍)
)

+
𝑛
∑

𝑠=1
𝑏3𝑘𝑠 ∫

𝑡

𝑡−𝜄(𝑡)
𝑓 𝑠3

(

𝑧𝑠𝑖 (𝑣, 𝜍)
)

d𝑣 −

∑

𝑚=1
𝜉𝑘𝑚

𝑛
∑

𝑠=1
𝑏3𝑘𝑠 ∫

𝑡

𝑡−𝜄(𝑡)
𝑓 𝑠3

(

𝑧𝑠𝑚(𝑣, 𝜍)
)

d𝑣

+ 𝜔𝑘𝑖 (𝑡, 𝜍) −

∑

𝑚=1
𝜉𝑘𝑚𝜔

𝑘
𝑚(𝑡, 𝜍) + 𝑢

𝑘
𝑖 (𝑡, 𝜍) −


∑

𝑚=1
𝜉𝑘𝑚𝑢

𝑘
𝑚(𝑡, 𝜍)
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+
𝜎
∑

𝜂=1


∑

𝑗=1
𝑐𝜂𝑔𝜂𝑖𝑗𝛾

𝜂
𝑘𝑧

𝑘
𝑗 (𝑡, 𝜍), 𝑖 ∈ 1, , 𝑘 ∈ 1, 𝑛. (5)

To explore the passivity of system (5), its output is given as

𝑦𝑖(𝑡, 𝜍) = 𝑃𝑒𝑖(𝑡, 𝜍) +𝑄𝜔̄𝑖(𝑡, 𝜍), 𝑖 ∈ 1, , (6)

where 𝑦𝑖(𝑡, 𝜍) = (𝑦1𝑖 (𝑡, 𝜍),… , 𝑦𝑝𝑖 (𝑡, 𝜍))
𝑇 ∈ 𝑝, 𝑒𝑖(𝑡, 𝜍) = (𝑒1𝑖 (𝑡, 𝜍),… , 𝑒𝑛𝑖 (𝑡, 𝜍))

𝑇 ∈ 𝑛, 𝜔̄𝑖(𝑡, 𝜍) = (𝜔̄1
𝑖 (𝑡, 𝜍),… , 𝜔̄𝑛𝑖 (𝑡, 𝜍))

𝑇 ∈ 𝑛, 𝜔̄𝑘𝑖 (𝑡, 𝜍) =
𝜔𝑘𝑖 (𝑡, 𝜍) −

∑
𝑚=1 𝜉

𝑘
𝑚𝜔

𝑘
𝑚(𝑡, 𝜍), and 𝑃 ,𝑄 ∈ 𝑝×𝑛.

Define

𝜔̂(𝑡, 𝜍) =
(

(

𝜔̂(1)(𝑡, 𝜍)
)
𝑇
,
(

𝜔̂(2)(𝑡, 𝜍)
)𝑇 ,… ,

(

𝜔̂(𝑛)(𝑡, 𝜍)
)𝑇 )𝑇 ∈ 𝑛 ,

𝜔̂(𝑘)(𝑡, 𝜍) = (𝜔̄𝑘1(𝑡, 𝜍), 𝜔̄
𝑘
2(𝑡, 𝜍),… , 𝜔̄𝑘 (𝑡, 𝜍))𝑇 ∈  ,

𝑦̂(𝑡, 𝜍) =
(

(

𝑦(1)(𝑡, 𝜍)
)𝑇 ,

(

𝑦(2)(𝑡, 𝜍)
)𝑇 ,… ,

(

𝑦(1)(𝑡, 𝜍)
)𝑇 )𝑇 ∈ 𝑝 ,

𝑦(𝑘)(𝑡, 𝜍) = (𝑦𝑘1(𝑡, 𝜍), 𝑦
𝑘
2(𝑡, 𝜍),… , 𝑦𝑘 (𝑡, 𝜍))𝑇 ∈  .

Definition 1.  [25]. System (5) with input vector 𝜔̂(𝑡, 𝜍) ∈ 𝑛  and output vector 𝑦̂(𝑡, 𝜍) ∈ 𝑝  is said to be strictly passive if there 
exist a non-negative storage function 𝑉 (𝑡) and matrices  ∈ 𝑝×𝑛 , 0 < 1 ∈ 𝑛×𝑛 , 0 < 2 ∈ 𝑝×𝑝  such that for any 𝑡 ∈ ≥0,

𝑉̇ (𝑡) ≤ ∫

𝛼

𝛼
𝑦̂𝑇 (𝑡, 𝜍)𝜔̂(𝑡, 𝜍)d𝜍 − ∫

𝛼

𝛼
𝜔̂𝑇 (𝑡, 𝜍)1𝜔̂(𝑡, 𝜍)d𝜍 − ∫

𝛼

𝛼
𝑦̂𝑇 (𝑡, 𝜍)2𝑦̂(𝑡, 𝜍)d𝜍.

Furthermore, system (5) is said to be passive if 1 = 0𝑛×𝑛  and 2 = 0𝑝×𝑝 . System (5) is input-strictly passive if 1 > 0 and 
2 = 0𝑝×𝑝 , system (5) is output-strictly passive if 2 > 0 and 1 = 0𝑛×𝑛 .

Lemma 1.  [17]. For any scalar 𝜀 > 0, vectors 𝑥 and 𝑦, then 2𝑥𝑇 𝑦 ≤ 𝜀𝑥𝑇 𝑥 + 𝜀−1𝑦𝑇 𝑦.

Lemma 2.  [41]. For any scalars 𝑥2 > 𝑥1 > 0, and a square-integrable vector function 𝑧 ∶ [𝑥1, 𝑥2] → 𝑛, 
(

∫

𝑥2

𝑥1
𝑧(𝑣)d𝑣

)𝑇 (

∫

𝑥2

𝑥1
𝑧(𝑣)d𝑣

)

≤ (𝑥2 − 𝑥1)∫

𝑥2

𝑥1
𝑧𝑇 (𝑣)𝑧(𝑣)d𝑣.

Lemma 3.  [42]. Assume that 𝑧 ∶ [𝛼, 𝛼] → 𝑛 be a square-integrable vector function with 𝑧(𝛼) = 0 or 𝑧(𝛼) = 0 and 0 < ∈ 𝑛×𝑛, then

∫

𝛼

𝛼
𝑧(𝜉)𝑇𝑧(𝜉)d𝜉 ≤

4(𝛼 − 𝛼)2

𝜋2 ∫

𝛼

𝛼
( d𝑧
d𝜉

)
𝑇
( d𝑧

d𝜉
)d𝜉.

Moreover, if 𝑧(𝛼) = 𝑧(𝛼) = 0, then

∫

𝛼

𝛼
𝑧(𝜉)𝑇𝑧(𝜉)d𝜉 ≤

(𝛼 − 𝛼)2

𝜋2 ∫

𝛼

𝛼
( d𝑧
d𝜉

)
𝑇
( d𝑧

d𝜉
)d𝜉.

3.  Main results

In this section, the passivity and synchronization for RDNNs are investigated by designing the spatial sampling controller.
For the convenience of subsequent analysis, denote  = 𝑃 ⊗ I ,  = 𝑄⊗ I , 𝛬(𝑘) = diag{𝜉𝑘1 , 𝜉

𝑘
2 ,… , 𝜉𝑘 }, 𝛬 =

diag{𝛬(1), 𝛬(2),… , 𝛬(𝑛)} ∈ 𝑛×𝑛 , 𝜌 = 1 − 𝜀4
2 − 𝛿2

2𝜀4(𝛼−𝛼)2
,  = diag{(1),(2),… ,(𝑛)} ∈ 𝑛×𝑛 , and

Ψ = 𝛬 − 𝛬

{[

𝜋2

(𝛼 − 𝛼)2
 + −

3
∑

𝑟=1

𝑟𝑇𝑟
2𝜀𝑟

−
( 𝜀1𝐿1

2
+
𝜀2𝐿2
2𝜚̂

+
𝜀3𝐿3𝜄2

2

)

I𝑛

]

⊗ I

}

− 𝜌𝛬𝜛.

3.1.  Passivity for RDNNs

First of all, we consider the passivity of system (5) by designing a kind of sampled-data control strategy, the control architecture is 
shown in Fig. 2. A set of fixed points 𝜍𝑝 is placed such that 𝛼 = 𝜍0 < 𝜍1 <⋯ < 𝜍𝑚−1 < 𝜍𝑚 = 𝛼, [𝜍𝑝, 𝜍𝑝+1) represents the sampling interval 
and satisfies sup

𝑝∈0,𝑚−1
{𝜍𝑝+1 − 𝜍𝑝} = 𝛿, 𝜍̄𝑝 =

𝜍𝑝+𝜍𝑝+1
2  is the sampling point.

To realize the passivity of system (5), 𝑚 sensors are placed on the midpoint of each sample subintervals [𝜍𝑝, 𝜍𝑝+1) and the controller 
is designed as

𝑢𝑖(𝑡, 𝜍) = −𝜛𝑖𝑒𝑖(𝑡, 𝜍̄𝑝), 𝜍 ∈ [𝜍𝑝, 𝜍𝑝+1), 𝑝 ∈ 0, 𝑚 − 1, (7)

where 𝑡 ∈ ≥0, 𝜛 = I𝑛 ⊗ diag{𝜛1, 𝜛2,… , 𝜛 }, 𝜛𝑖 is the control gain.
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Fig. 2. Spatial sampling control architecture.

Remark 3. The spatial sampling controller (7) proposed in this paper operates only at key positions within the spatial region. It offers 
two main advantages. Economically, compared to the full-domain controllers in [25–27], it avoids resource waste caused by deploying 
control nodes throughout the entire space. Technically, this sampling mode relies on the in-depth analysis of spatial characteristics. 
For example, in intelligent transportation systems, the installation of traffic signals and surveillance equipment ensures efficient 
city-wide traffic management. 
Theorem 1. Under Assumptions 1–3 and  spatial sampling controller (7), system (5) is strictly passive if there exist scalars 𝜀𝑖 > 0 (𝑖 ∈ 1, 4), 
matrix , positive-definite matrices 1 and 2 such that

𝐶1 ∶ Ξ =
(

Υ Σ
Σ𝑇 Δ

)

≤ 0,

𝐶2 ∶
𝛿2

2𝜀4𝜋2
𝜛 −⊗ I ≤ 0,

where Υ = [Ψ − 𝑇2]𝑠, Σ = 1
2𝛬 + 𝑇 [2]𝑠 − 1

2
𝑇, Δ = 𝑇 [2]𝑠 + [1]𝑠 − [𝑇]𝑠. 

Proof.  Pick a Lyapunov functional

𝑉 (𝑡) =  (𝑡) + 𝜂1 ∫

𝑡

𝜚(𝑡)
 (𝑣)d𝑣 + 𝜂2 ∫

0

−𝜄

[

∫

𝑡

𝑡+𝜃
 (𝑣)d𝑣

]

d𝜃,

and

 (𝑡) = 1
2

𝑛
∑

𝑘=1
∫

𝛼

𝛼

(

𝑒(𝑘)(𝑡, 𝜍)
)𝑇
𝛬(𝑘)𝑒(𝑘)(𝑡, 𝜍)d𝜍,

where 𝑡 ∈ ≥0, 𝜂1 = 𝜀2𝐿2
𝜚̂ , 𝜂2 = 𝜀3𝐿3𝜄, 𝑒(𝑘) = (𝑒𝑘1(𝑡, 𝜍),… , 𝑒𝑘 (𝑡, 𝜍))𝑇 , 𝑘 ∈ 1, 𝑛, 𝑒(𝑡, 𝜍) =

(

(

𝑒(1)(𝑡, 𝜍)
)𝑇 ,

(

𝑒(2)(𝑡, 𝜍)
)𝑇 ,… ,

(

𝑒(𝑛)(𝑡, 𝜍)
)𝑇

)𝑇
∈ 𝑛 .

Take the derivative to  (𝑡) along with error system (5),

̇ (𝑡) =

∑

𝑖=1

𝑛
∑

𝑘=1
∫

𝛼

𝛼
𝜉𝑘𝑖 𝑒

𝑘
𝑖 (𝑡, 𝜍)

[

𝑑𝑘
𝜕2𝑒𝑘𝑖 (𝑡, 𝜍

2)
𝜕𝜍

− 𝑎𝑘𝑒𝑘𝑖 (𝑡, 𝜍)

+
𝑛
∑

𝑠=1
𝑏1𝑘𝑠𝑓

𝑠
1 (𝑧

𝑠
𝑖 (𝑡, 𝜍)) −

𝑛
∑

𝑠=1
𝑏1𝑘𝑠𝑓

𝑠
1 (𝑧̄

𝑠(𝑡, 𝜍))

+
𝑛
∑

𝑠=1
𝑏1𝑘𝑠𝑓

𝑠
1 (𝑧̄

𝑠(𝑡, 𝜍)) −

∑

𝑚=1
𝜉𝑘𝑚

𝑛
∑

𝑠=1
𝑏1𝑘𝑠𝑓

𝑠
1 (𝑧

𝑠
𝑚(𝑡, 𝜍))

+
𝑛
∑

𝑠=1
𝑏2𝑘𝑠𝑓

𝑠
2 (𝑧

𝑠
𝑖 (𝜚(𝑡), 𝜍)) −

𝑛
∑

𝑠=1
𝑏2𝑘𝑠𝑓

𝑠
2 (𝑧̄

𝑠(𝜚(𝑡), 𝜍))

+
𝑛
∑

𝑠=1
𝑏2𝑘𝑠𝑓

𝑠
2 (𝑧̄

𝑠
𝑖 (𝜚(𝑡), 𝜍) −


∑

𝑚=1
𝜉𝑘𝑚

𝑛
∑

𝑠=1
𝑏2𝑘𝑠𝑓

𝑠
2 (𝑧

𝑠
𝑚(𝜚(𝑡), 𝜍)

+
𝑛
∑

𝑠=1
𝑏3𝑘𝑠 ∫

𝑡

𝑡−𝜄(𝑡)
𝑓 𝑠3 (𝑧

𝑠
𝑖 (𝑣, 𝜍))d𝑣 −

𝑛
∑

𝑠=1
𝑏3𝑘𝑠 ∫

𝑡

𝑡−𝜄(𝑡)
𝑓 𝑠3 (𝑧̄

𝑠(𝑣, 𝜍))d𝑣

+
𝑛
∑

𝑠=1
𝑏3𝑘𝑠 ∫

𝑡

𝑡−𝜄(𝑡)
𝑓 𝑠3 (𝑧̄

𝑠(𝑣, 𝜍))d𝑣 −

∑

𝑚=1
𝜉𝑘𝑚

𝑛
∑

𝑠=1
𝑏3𝑘𝑠 ∫

𝑡

𝑡−𝜄(𝑡)
𝑓 𝑠3 (𝑧

𝑠
𝑖 (𝑣, 𝜍))d𝑣

+
𝜎
∑

𝜂=1


∑

𝑗=1
𝑐𝜂𝑔𝜂𝑖𝑗𝛾

𝜂
𝑘𝑧

𝑘
𝑗 (𝑡, 𝜍) + 𝜔̄

𝑘
𝑖 (𝑡, 𝜍) + 𝑢

𝑘
𝑖 (𝑡, 𝜍) −


∑

𝑚=1
𝜉𝑘𝑚𝑢

𝑘
𝑚(𝑡, 𝜍)

]

d𝜍. (8)
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According to the Dirichlet boundary condition and utilizing integration by parts,

∑

𝑖=1

𝑛
∑

𝑘=1
𝜉𝑘𝑖 ∫

𝛼

𝛼
𝑒𝑘𝑖 (𝑡, 𝜍)𝑑𝑘

𝜕2𝑒𝑘𝑖 (𝑡, 𝜍)
𝜕𝜍2

d𝜍

=

∑

𝑖=1

𝑛
∑

𝑘=1
𝑒𝑘𝑖 𝜉

𝑘
𝑖 𝑑𝑘

𝜕𝑒𝑘𝑖 (𝑡, 𝜍)
𝜕𝜍

|

|

|

𝛼

𝛼
−


∑

𝑖=1

𝑛
∑

𝑘=1
∫

𝛼

𝛼

𝜕𝑒𝑘𝑖 (𝑡, 𝜍)
𝜕𝜍

𝜉𝑘𝑖 𝑑𝑘
𝜕𝑒𝑘𝑖 (𝑡, 𝜍)
𝜕𝜍

d𝜍

= −
𝑛
∑

𝑘=1
∫

𝛼

𝛼
𝑑𝑘

( 𝜕𝑒(𝑘)(𝑡, 𝜍)
𝜕𝜍

)
𝑇

𝛬(𝑘)
( 𝜕𝑒(𝑘)(𝑡, 𝜍)

𝜕𝜍

)

d𝜍

= − ∫

𝛼

𝛼

( 𝜕𝑒(𝑡, 𝜍)
𝜕𝜍

)𝑇
𝛬(⊗ I )

( 𝜕𝑒(𝑡, 𝜍)
𝜕𝜍

)

d𝜍. (9)

It is noted that

∑

𝑖=1
𝜉𝑘𝑖 𝑒

𝑘
𝑖 (𝑡, 𝜍) =


∑

𝑖=1
𝜉𝑘𝑖
[

𝑧𝑘𝑖 (𝑡, 𝜍) −

∑

𝑚=1
𝜉𝑘𝑚𝑧

𝑘
𝑚(𝑡, 𝜍)

]

= 0,

which shows that

∑

𝑖=1

𝑛
∑

𝑘=1
𝜉𝑘𝑖 𝑒

𝑘
𝑖 (𝑡, 𝜍)

[

𝑛
∑

𝑠=1
𝑏1𝑘𝑠𝑓

𝑠
1 (𝑧̄

𝑠(𝑡, 𝜍)) −

∑

𝑚=1
𝜉𝑘𝑚

𝑛
∑

𝑠=1
𝑏1𝑘𝑠𝑓

𝑠
1 (𝑧

𝑠
𝑚(𝑡, 𝜍))

]

= 0,


∑

𝑖=1

𝑛
∑

𝑘=1
𝜉𝑘𝑖 𝑒

𝑘
𝑖 (𝑡, 𝜍)

[

𝑛
∑

𝑠=1
𝑏2𝑘𝑠𝑓

𝑠
2 (𝑧̄

𝑠(𝜚(𝑡), 𝜍)) −

∑

𝑚=1
𝜉𝑘𝑚

𝑛
∑

𝑠=1
𝑏2𝑘𝑠𝑓

𝑠
2 (𝑧

𝑠
𝑚(𝜚(𝑡), 𝜍))

]

= 0,


∑

𝑖=1

𝑛
∑

𝑘=1
𝜉𝑘𝑖 𝑒

𝑘
𝑖 (𝑡, 𝜍)∫

𝑡

𝑡−𝜄(𝑡)

[

𝑛
∑

𝑠=1
𝑏3𝑘𝑠𝑓

𝑠
3 (𝑧̄

𝑠(𝑣, 𝜍)) −

∑

𝑚=1
𝜉𝑘𝑚

𝑛
∑

𝑠=1
𝑏3𝑘𝑠𝑓

𝑠
3 (𝑧

𝑠
𝑚(𝑣, 𝜍))

]

d𝑣 = 0,


∑

𝑖=1

𝑛
∑

𝑘=1
𝜉𝑘𝑖 𝑒

𝑘
𝑖 (𝑡, 𝜍)

[


∑

𝑚=1
𝜉𝑘𝑚𝑢

𝑘
𝑚(𝑡, 𝜍)

]

= 0.

Define

𝑒𝑖(𝑡, 𝜍) = diag{
√

𝜉𝑛𝑖 ,… ,
√

𝜉𝑛𝑖 }𝑒𝑖(𝑡, 𝜍) ∈ 𝑛,

𝐹𝑟(𝑒𝑖(⋅, 𝜍)) = diag{
√

𝜉𝑛𝑖 ,… ,
√

𝜉𝑛𝑖 }(𝑓𝑟(𝑧𝑖(⋅, 𝜍)) − 𝑓𝑟(𝑧̄(⋅, 𝜍))) ∈ 𝑛.

From Assumption 1, Lemmas 1 and 2, there exist some positive scalars 𝜀𝑖 (𝑖 ∈ 1, 3) such that
𝑛
∑

𝑘=1
𝑒𝑘𝑖 (𝑡, 𝜍)𝜉

𝑘
𝑖

𝑛
∑

𝑠=1
𝑏1𝑘𝑠

[

𝑓 𝑠1 (𝑧
𝑠
𝑖 (𝑡, 𝜍)) − 𝑓

𝑠
1 (𝑧̄

𝑠(𝑡, 𝜍))
]

+
𝑛
∑

𝑘=1
𝑒𝑘𝑖 (𝑡, 𝜍)𝜉

𝑘
𝑖

𝑛
∑

𝑠=1
𝑏2𝑘𝑠

[

𝑓 𝑠2 (𝑧
𝑠
𝑖 (𝜚(𝑡), 𝜍)) − 𝑓

𝑠
2 (𝑧̄

𝑠(𝜚(𝑡), 𝜍))
]

+
𝑛
∑

𝑘=1
𝑒𝑘𝑖 (𝑡, 𝜍)𝜉

𝑘
𝑖

𝑛
∑

𝑠=1
𝑏3𝑘𝑠 ∫

𝑡

𝑡−𝜄(𝑡)

[

𝑓 𝑠3 (𝑧
𝑠
𝑖 (𝑣, 𝜍)) − 𝑓

𝑠
3 (𝑧̄

𝑠(𝑣, 𝜍))
]

d𝑣

≤ 1
2𝜀1


∑

𝑖=1
𝑒𝑇𝑖 (𝑡, 𝜍)1𝑇1 𝑒𝑖(𝑡, 𝜍) +

𝜀1𝐿1
2


∑

𝑖=1
𝑒𝑇𝑖 (𝑡, 𝜍)𝑒𝑖(𝑡, 𝜍)

+ 1
2𝜀2


∑

𝑖=1
𝑒𝑇𝑖 (𝑡, 𝜍)2𝑇2 𝑒𝑖(𝑡, 𝜍) +

𝜀2𝐿2
2


∑

𝑖=1
𝑒𝑇𝑖 (𝜚(𝑡), 𝜍)𝑒𝑖(𝜚(𝑡), 𝜍)

+ 1
2𝜀3


∑

𝑖=1
𝑒𝑇𝑖 (𝑡, 𝜍)3𝑇3 𝑒𝑖(𝑡, 𝜍) +

𝜀3𝐿3𝜄
2


∑

𝑖=1
∫

𝑡

𝑡−𝜄(𝑡)
𝑒𝑇𝑖 (𝑣, 𝜍)𝑒𝑖(𝑣, 𝜍)d𝑣

≤1
2
𝑒𝑇 (𝑡, 𝜍)𝛬(

3
∑

𝑟=1

1
𝜀𝑟

𝑟𝑇𝑟 ⊗ I )𝑒(𝑡, 𝜍) +
𝜀1𝐿1
2

𝑒𝑇 (𝑡, 𝜍)𝛬𝑒(𝑡, 𝜍)

+
𝜀2𝐿2
2

𝑒𝑇 (𝜚(𝑡), 𝜍)𝛬𝑒(𝜚(𝑡), 𝜍) +
𝜀3𝐿3𝜄
2 ∫

𝑡

𝑡−𝜄(𝑡)
𝑒𝑇 (𝑣, 𝜍)𝛬𝑒(𝑣, 𝜍)d𝑣. (10)

Note that 𝑒𝑘𝑖 (𝑡, 𝜍̄𝑝) = 𝑒𝑘𝑖 (𝑡, 𝜍) − ∫ 𝜍𝜍̄𝑝
𝜕𝑒𝑘𝑖 (𝑡,𝑠)
𝜕𝑠 d𝑠, 𝜍𝑝+1 − 𝜍̄𝑝 ≤ 𝛿

2  and 𝜍̄𝑝 − 𝜍𝑝 ≤
𝛿
2 , then


∑

𝑖=1

𝑛
∑

𝑘=1
∫

𝛼

𝛼
𝑒𝑘𝑖 (𝑡, 𝜍)𝜉

𝑘
𝑖 𝑢

𝑘
𝑖 (𝑡, 𝜍)d𝜍
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= − ∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)𝛬𝜛𝑒(𝑡, 𝜍)d𝜍 + ∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)𝛬𝜛

(

∫

𝜍

𝜍̄𝑝

𝜕𝑒(𝑡, 𝑠)
𝜕𝑠

d𝑠

)

d𝜍

≤ − ∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)𝛬𝜛𝑒(𝑡, 𝜍)d𝜍 +

𝑚−1
∑

𝑝=0

𝜀4
2 ∫

𝑥𝑝+1

𝑥𝑝
𝑒𝑇 (𝑡, 𝜍)𝛬𝜛𝑒(𝑡, 𝜍) d𝜍

+ 1
2𝜀4

𝑚−1
∑

𝑝=0
∫

𝜍𝑝+1

𝜍𝑝

(

𝑒(𝑡, 𝜍) − 𝑒(𝑡, 𝜍̄𝑝)
)𝑇
𝛬𝜛

(

𝑒(𝑡, 𝜍) − 𝑒(𝑡, 𝜍̄𝑝)
)

d𝜍

= − ∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)𝛬𝜛𝑒(𝑡, 𝜍)d𝜍 +

𝜀4
2

𝑚−1
∑

𝑝=0
∫

𝜍𝑝+1

𝜍𝑝
𝑒𝑇 (𝑡, 𝜍)𝛬𝜛𝑒(𝑡, 𝜍)d𝜍

+ 1
2𝜀4

𝑚−1
∑

𝑝=0

[

∫

𝜍̄𝑝

𝜍𝑝

(

𝑒(𝑡, 𝜍) − 𝑒(𝑡, 𝜍̄𝑝)
)𝑇
𝛬𝜛

(

𝑒(𝑡, 𝜍) − 𝑒(𝑡, 𝜍̄𝑝)
)

d𝜍

+ ∫

𝜍𝑝+1

𝜍̄𝑝

(

𝑒(𝑡, 𝜍) − 𝑒(𝑡, 𝜍̄𝑝)
)𝑇
𝛬𝜛

(

𝑒(𝑡, 𝜍) − 𝑒(𝑡, 𝜍̄𝑝)
)

d𝜍

]

≤ − (1 −
𝜀4
2
)∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)𝛬𝜛𝑒(𝑡, 𝜍)d𝜍

+ 1
2𝜀4

𝑚−1
∑

𝑝=0

[

4(𝜍̄𝑝 − 𝜍𝑝)2

𝜋2 ∫

𝜍̄𝑝

𝜍𝑝

( 𝜕𝑒(𝑡, 𝜍)
𝜕𝜍

)𝑇
𝛬𝜛

𝜕𝑒(𝑡, 𝜍)
𝜕𝜍

d𝜍

+
4(𝜍𝑝+1 − 𝜍̄𝑝)2

𝜋2 ∫

𝜍𝑝+1

𝜍̄𝑝

( 𝜕𝑒(𝑡, 𝜍)
𝜕𝜍

)𝑇
𝛬𝜛

𝜕𝑒(𝑡, 𝜍)
𝜕𝜍

d𝜍

]

≤ − (1 −
𝜀4
2
)∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)𝛬𝜛𝑒(𝑡, 𝜍)d𝜍

+ 𝛿2

2𝜀4𝜋2 ∫

𝛼

𝛼

( 𝜕𝑒(𝑡, 𝜍)
𝜕𝜍

)𝑇
𝛬𝜛

𝜕𝑒(𝑡, 𝜍)
𝜕𝜍

d𝜍. (11)

According to the condition 𝐶2, Eq. (9), inequality (11) and Lemma 3,

− ∫

𝛼

𝛼

𝜕𝑒𝑇 (𝑡, 𝜍)
𝜕𝜍

𝛬
[

⊗ I − 𝛿2

2𝜀4𝜋2
𝜛
] 𝜕𝑒(𝑡, 𝜍)

𝜕𝜍
d𝜍

≤ − 1
(𝛼 − 𝛼)2 ∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)𝛬

[

𝜋2⊗ I − 𝛿2

2𝜀4
𝜛
]

𝑒(𝑡, 𝜍)d𝜍. (12)

Substituting the formulas (9)–(12) into the Eq. (8) yields that

̇ (𝑡) ≤∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)

{

[𝛬]𝑠 − 𝛬

[(

𝜋2

(𝛼 − 𝛼)2
 + −

3
∑

𝑟=1

𝑟𝑇𝑟
2𝜀𝑟

−
𝜀1𝐿1
2

I𝑛

)

⊗ I

]

−
(

1 −
𝜀4
2

− 𝛿2

2𝜀4(𝛼 − 𝛼)2
)

𝛬𝜛

}

𝑒(𝑡, 𝜍)d𝜍 +
𝜀2𝐿2
2 ∫

𝛼

𝛼
𝑒𝑇 (𝜚(𝑡), 𝜍)𝛬𝑒(𝜚(𝑡), 𝜍)d𝜍

+
𝜀3𝐿3𝜄
2 ∫

𝛼

𝛼 ∫

𝑡

𝑡−𝜄(𝑡)
𝑒𝑇 (𝑣, 𝜍)𝛬𝑒(𝑣, 𝜍)d𝑣d𝜍 + ∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)𝛬𝜔̂(𝑡, 𝜍)d𝜍. (13)

Combining inequality (13) and Assumption 2,

𝑉̇ (𝑡) =̇ (𝑡) + 𝜂1 (𝑡) − 𝜂1𝜚̇(𝑡) (𝜚(𝑡)) + 𝜂2
(

𝜄 (𝑡) − ∫

𝑡

𝑡−𝜄
 (𝑣)d𝑣

)

≤∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)

{

[𝛬]𝑠 − 𝛬

[(

𝜋2

(𝛼 − 𝛼)2
 + − 1

2

3
∑

𝑟=1

1
𝜀𝑟

𝑟𝑇𝑟

−
𝜀1𝐿1 + 𝜂1 + 𝜂2𝜄

2
I𝑛

)

⊗ I

]

−
(

1 −
𝜀4
2

− 𝛿2

2𝜀4(𝛼 − 𝛼)2
)

𝛬𝜛

}

𝑒(𝑡, 𝜍)d𝜍

+
( 𝜀2𝐿2

2
−
𝜂1𝜚̇(𝑡)
2

)

∫

𝛼

𝛼
𝑒𝑇 (𝜚(𝑡), 𝜍)𝛬𝑒(𝜚(𝑡), 𝜍)d𝜍

+
( 𝜀3𝐿3𝜄

2
−
𝜂2
2

)

∫

𝛼

𝛼 ∫

𝑡

𝑡−𝜄(𝑡)
𝑒𝑇 (𝑣, 𝜍)𝛬𝑒(𝑣, 𝜍)d𝑣d𝜍
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+ ∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)𝛬𝜔̂(𝑡, 𝜍)d𝜍

≤∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)Ψ𝑒(𝑡, 𝜍)d𝜍 + ∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)𝛬𝜔̂(𝑡, 𝜍)d𝜍.

Furthermore, according to Definition 1, one obtains

𝑉̇ (𝑡) − ∫

𝛼

𝛼
𝑦̂𝑇 (𝑡, 𝜍)𝜔̂(𝑡, 𝜍)d𝜍 + ∫

𝛼

𝛼
𝜔̂𝑇 (𝑡, 𝜍)1𝜔̂(𝑡, 𝜍)d𝜍 + ∫

𝛼

𝛼
𝑦̂𝑇 (𝑡, 𝜍)2𝑦̂(𝑡, 𝜍)d𝜍

≤∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)

[

Ψ − 𝑇2
]𝑠
𝑒(𝑡, 𝜍)d𝜍

+ ∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)

( 1
2
𝛬 + 𝑇 [2]𝑠 − 1

2
𝑇

)

𝜔̂(𝑡, 𝜍)d𝜍

+ ∫

𝛼

𝛼
𝜔̂𝑇 (𝑡, 𝜍)

( 1
2
𝛬 +𝑇 [2]𝑠 − 1

2
𝑇

)

𝑒(𝑡, 𝜍)d𝜍

+ ∫

𝛼

𝛼
𝜔̂𝑇 (𝑡, 𝜍)d𝜍

(

𝑇 [2]𝑠 + [1]𝑠 − [𝑇]𝑠
)

𝜔̂(𝑡, 𝜍)d𝜍

=∫

𝛼

𝛼
𝐄𝑇 (𝑡, 𝜍)Ξ𝐄(𝑡, 𝜍)d𝜍, (14)

where 𝐄(𝑡, 𝜍) = (𝑒𝑇 (𝑡, 𝜍), 𝜔̂𝑇 (𝑡, 𝜍))𝑇 .
By combining the condition 𝐶1 and inequality (14), 

𝑉̇ (𝑡) ≤∫

𝛼

𝛼
𝑦̂𝑇 (𝑡, 𝜍)𝜔̂(𝑡, 𝜍)d𝜍 − ∫

𝛼

𝛼
𝜔̂𝑇 (𝑡, 𝜍)1𝜔̂(𝑡, 𝜍)d𝜍 − ∫

𝛼

𝛼
𝑦̂𝑇 (𝑡, 𝜍)2𝑦̂(𝑡, 𝜍)d𝜍.

The proof is finished. ∎
Corollary 1. Under Assumptions 1–3 and spatial sampled-data controller (7), the error system (5) is input-strictly passive if there exist 
scalars 𝜀𝑖 > 0 (𝑖 ∈ 1, 4) and matrices  ∈ 𝑝×𝑛  and 0 < 1 ∈ 𝑛×𝑛  such that 

Ξ̃ =
(

[Ψ]𝑠 Σ̃
Σ̃𝑇 Δ̃

)

≤ 0, 𝛿2

2𝜀4𝜋2
𝜛 −⊗ I ≤ 0,

where Σ̃ = 1
2𝛬 − 1

2
𝑇, Δ̃ = [1]𝑠 − [𝑇]𝑠. 

Corollary 2. Under Assumptions 1–3 and spatial sampled-data controller (7), the error system (5) is output-strictly passive if there exist 
scalars 𝜀𝑖 > 0 (𝑖 ∈ 1, 4) and matrices  ∈ 𝑝×𝑛  and 0 < 2 ∈ 𝑝×𝑝  such that 

Ξ̂ =
(

Υ Σ
Σ𝑇 Δ̂

)

≤ 0, 𝛿2

2𝜀4𝜋2
𝜛 −⊗ I ≤ 0,

where Δ̂ = 𝑇 [2]𝑠 − [𝑇]𝑠. 

Remark 4. The established conditions in Theorem 1 depend on the control parameters 𝜛𝑖 (𝑖 ∈ 1, ), the matrices , 1, 2, and 
the free parameters 𝜀1, 𝜀2, 𝜀3, 𝜀4. By Schur complement Lemma [43], Ξ ≤ 0 is equivalent to

Δ < 0 and 𝑅 − ΣΔ−1Σ𝑇 ≤ 0.

When other parameters are fixed, an increase in the control gain 𝜛𝑖 leads to a higher probability of satisfying the condition Ξ ≤ 0, 
which implies that the passivity of the error system (5) can be easily ensured by implementing control with large gains. However, 
it is imperative to avoid large control actions in practice. Therefore, some appropriate free parameters 𝜀𝑟 (𝑟 ∈ 1, 4) can be selected 
as a tradeoff between convergence performance and control gains. In addition, a decrease in the upper bound of sampling interval 𝛿
facilitates the fulfillment of condition (𝐶2). The associated parameter selection strategy is presented in Algorithm 1.

Algorithm 1 The Parameter Selection Strategy in Theorem 1, Corollaries 1 and 2.
▸ Give initial conditions, topological structure, network parameters
▸ Calculate 𝜛, 𝜀1, 𝜀2, 𝜀3, 𝜀4,,1,2 by LMI toolbox

♢ Ensure Ξ < 0 and 𝛿2

2𝜀4𝜋2
𝜛 −⊗ I ≤ 0 in case of strict passivity

♢ Ensure Ξ̃ < 0 and 𝛿2

2𝜀4𝜋2
𝜛 −⊗ I ≤ 0 in case of input-strict passivity

♢ Ensure Ξ̂ < 0 and 𝛿2

2𝜀4𝜋2
𝜛 −⊗ I ≤ 0 in case of output-strict passivity

▸ Draw the simulation results
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3.2.  Synchronization for RDNNs

In this part, the asymptotical synchronization of the RDNN (1) is investigated.
Definition 2.  The RDNN (1) is asymptotically synchronized if

lim
𝑡→+∞

‖𝑒𝑖(𝑡, ⋅)‖[𝛼,𝛼] = 0, 𝑖 ∈ 1, .

Theorem 2. Under Assumptions 1–3 and  spatial sampling controller (7), the RDNN (1) with 𝜔̂(𝑡, 𝜍) ≡ 0𝑛  is asymptotically synchronized 
if the error system (5) is output-strictly passive and 𝑇 [2]𝑠 > 0. 
Proof.  Construct the same Lyapunov functional 𝑉 (𝑡) as Theorem 1. Since error system (5) is output-strict passive, 

𝑉̇ (𝑡) ≤∫

𝛼

𝛼
𝑦̂𝑇 (𝑡, 𝜍)𝜔̂(𝑡, 𝜍)d𝜍 − ∫

𝛼

𝛼
𝜔̂𝑇 (𝑡, 𝜍)1𝜔̂(𝑡, 𝜍)d𝜍 − ∫

𝛼

𝛼
𝑦̂𝑇 (𝑡, 𝜍)2𝑦̂(𝑡, 𝜍)d𝜍.

When 𝜔̂(𝑡, 𝜍) = 0𝑛 , from the output (6),

𝑉̇ (𝑡) ≤ −∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)𝑇 [2]𝑠𝑒(𝑡, 𝜍)d𝜍 < 0,

which ensures that the asymptotical synchronization for the RDNN (1) is realized. ∎
Theorem 3. Under Assumptions 1–3 and  spatial sampling controller (7), the RDNN (1) with 𝜔̂(𝑡, 𝜍) ≡ 0𝑛  is asymptotically synchronized 
if there exist scalars 𝜀𝑖 > 0 (𝑖 ∈ 1, 4) such that Ψ < 0 and 𝛿2

2𝜀4𝜋2
𝜛 −⊗ I ≤ 0. 

Proof.  Similar to Theorem 1, from the condition Ψ < 0, 

𝑉̇ (𝑡) ≤∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)Ψ𝑒(𝑡, 𝜍)d𝜍 < 0,

which demonstrates that the RDNN (1) is asymptotically synchronized. ∎
To further reduce the control gain 𝜛 determined by the condition (𝐶1) in Theorem 1, there arises a necessity for an adaptive spatial 
sampled-data control strategy to dynamically adjust the control gain. The adaptive control strategy is designed as 

⎧

⎪

⎨

⎪

⎩

𝑢𝑘𝑖 (𝑡, 𝜍) = −𝜛𝑖(𝑡, 𝜍)𝑒𝑘𝑖 (𝑡, 𝜍̄𝑝),
𝜕𝜛𝑖(𝑡,𝜍)
𝜕𝑡 = 𝛿𝑖𝑒𝛽𝑡

𝑛
∑

𝑘=1
𝜉𝑘𝑖 𝑒

𝑘
𝑖 (𝑡, 𝜍)𝑒

𝑘
𝑖 (𝑡, 𝜍̄𝑝),

(15)

where 𝑖 ∈ 1, , 𝜛𝑖(0, 𝜍) ≥ 0, 𝜍̄𝑝 =
𝜍𝑝+𝜍𝑝+1

2 , 𝜍 ∈ [𝜍𝑝, 𝜍𝑝+1), 𝑝 ∈ 0, 𝑚 − 1, 𝑘 ∈ 1, 𝑛, 𝛿𝑖 is an arbitrary positive constant and 𝛽 > 0 is a suffi-
ciently small real number.
Remark 5. Among the recent results on adaptive synchronization of RDNNs, such as [16,29,32], the adaptive law corresponding to 
the control gain 𝜕𝜛𝑖(𝑡,𝜍)

𝜕𝑡 = 𝑒𝑇𝑖 (𝑡, 𝜍)𝑒𝑖(𝑡, 𝜍) was designed. However, the aforementioned adaptive law cannot be directly applied to the 
spatial sampling mechanism. Unlike this method, a new adaptive spatial sampling control scheme (15) is proposed, which integrates 
spatial sampling control with adaptive control and effectively reduce control costs. 
Theorem 4.  Under Assumptions 1–3 and the adaptive spatial sampling controller (15), the RDNN (1) with 𝜔̂(𝑡, 𝜍) ≡ 𝟎𝑛  is asymptotically 
synchronized. 
Proof.  Pick a new Lyapunov functional 

(𝑡) = (𝑡) + 𝑅(𝑡), (16)

where

(𝑡) = 𝑒𝛽𝑡 (𝑡) + 𝜂1𝑒𝛽𝜚̄ ∫

𝑡

𝜚(𝑡)
𝑒𝛽𝑣 (𝑣)d𝑣 + 𝜂2𝑒𝛽𝜄 ∫

0

−𝜄

[

∫

𝑡

𝑡+𝜃
𝑒𝛽𝑣 (𝑣)d𝑣

]

d𝜃,

𝑅(𝑡) =

∑

𝑖=1

1
2𝛿𝑖 ∫

𝛼

𝛼

(

𝜛𝑖(𝑡, 𝜍) −𝜛∗
𝑖

)2
d𝜍,

here 𝜂1 = 𝜀2𝐿2
𝜚̂ , 𝜂2 = 𝜀3𝐿3𝜄, the definition of  (𝑡) is same as Theorem 1, and 𝜛∗

𝑖 > 0 will be determined in subsequent analysis.
In analogy to Theorem 1, based on the controller (15) and 𝜔̂(𝑡, 𝜍) ≡ 𝟎𝑛 ,

̇ (𝑡) ≤∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)

{

[Λ]𝑠 − Λ
[(

 −
3
∑

𝑟=1

𝑟𝑇𝑟
2𝜀𝑟

−
𝜀1𝐿1
2

𝐈𝑛
)

⊗ 𝐈
]}

𝑒(𝑡, 𝜍)d𝜍

− ∫

𝛼

𝛼

(

𝜕𝑒(𝑡, 𝜍)
𝜕𝜍

)𝑇
𝛬(⊗ I )

(

𝜕𝑒(𝑡, 𝜍)
𝜕𝜍

)

d𝜍
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−

∑

𝑖=1

𝑛
∑

𝑘=1
∫

𝛼

𝛼
𝑒𝑘𝑖 (𝑡, 𝜍)𝜉

𝑘
𝑖 𝜛𝑖(𝑡, 𝜍)𝑒𝑘𝑖 (𝑡, 𝜍̄𝑝)d𝜍 +

𝜀2𝐿2
2 ∫

𝛼

𝛼
𝑒𝑇 (𝜚(𝑡), 𝜍)𝛬𝑒(𝜚(𝑡), 𝜍)d𝜍

+
𝜀3𝐿3𝜄
2 ∫

𝛼

𝛼 ∫

𝑡

𝑡−𝜄(𝑡)
𝑒𝑇 (𝑣, 𝜍)𝛬𝑒(𝑣, 𝜍)d𝑣d𝜍. (17)

Then, from Assumption 2, one has 𝜚̄ + 𝜚(𝑡) ≥ 𝑡 and
̇(𝑡) =𝛽𝑒𝛽𝑡 (𝑡) + 𝑒𝛽𝑡̇ (𝑡) + 𝜂1𝑒𝛽(𝜚̄+𝑡) (𝑡) − 𝜂1𝑒𝛽(𝜚̄+𝜚(𝑡)) (𝜚(𝑡))𝜚̇(𝑡)

+ 𝜂2𝜄𝑒𝛽𝜄𝑒𝛽𝑡 (𝑡) − 𝜂2𝑒𝛽𝑡 ∫

0

−𝜄
𝑒𝛽(𝜄+𝜃) (𝑡 + 𝜃)d𝜃

≤𝑒𝛽𝑡
{

̇ (𝑡) + (𝛽 + 𝜂1𝑒𝛽𝜚̄ + 𝜂2𝜄𝑒𝛽𝜄) (𝑡) − 𝜂1 (𝜚(𝑡))𝜚̂ − 𝜂2 ∫

𝑡

𝑡−𝜄(𝑡)
 (𝑣)d𝑣

}

=𝑒𝛽𝑡
{

̇ (𝑡) +
𝛽 + 𝜂1𝑒𝛽𝜚̄ + 𝜂2𝜄𝑒𝛽𝜄

2 ∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)𝛬𝑒(𝑡, 𝜍)d𝜍

−
𝜂1𝜚̂
2 ∫

𝛼

𝛼
𝑒𝑇 (𝜚(𝑡), 𝜍)𝛬𝑒(𝜚(𝑡), 𝜍)d𝜍 −

𝜂2
2 ∫

𝛼

𝛼 ∫

𝑡

𝑡−𝜄(𝑡)
𝑒𝑇 (𝑣, 𝜍)𝛬𝑒(𝑣, 𝜍)d𝑣d𝜍

}

. (18)

Thus, in view of the formulas (17) and (18),

̇(𝑡) ≤𝑒𝛽𝑡
{

∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)

{

[Λ]𝑠 − Λ
[(

 −
3
∑

𝑟=1

𝑟𝑇𝑟
2𝜀𝑟

−
( 𝜀1𝐿1 + 𝛽 + 𝐿3𝑒𝛽𝜄𝜄2

2

+
𝜀2𝐿2𝑒𝛽𝜚̄

2𝜚̂
)

𝐈𝑛
)

⊗ 𝐈
]}

𝑒(𝑡, 𝜍)d𝜍 − ∫

𝛼

𝛼

(

𝜕𝑒(𝑡, 𝜍)
𝜕𝜍

)𝑇
𝛬(⊗ I )

(

𝜕𝑒(𝑡, 𝜍)
𝜕𝜍

)

d𝜍

−𝜛∗

∑

𝑖=1

𝑛
∑

𝑘=1
∫

𝛼

𝛼
𝜉𝑘𝑖 𝑒

𝑘
𝑖 (𝑡, 𝜍)𝑒

𝑘
𝑖 (𝑡, 𝜍̄𝑝)d𝜍

}

. (19)

In line with the analysis in the inequality (11), one has

−𝜛∗

∑

𝑖=1

𝑛
∑

𝑘=1
∫

𝛼

𝛼
𝜉𝑘𝑖 𝑒

𝑘
𝑖 (𝑡, 𝜍)𝑒

𝑘
𝑖 (𝑡, 𝜍̄𝑝)d𝜍

≤ −𝜛∗(1 −
𝜀4
2
)∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)𝛬𝑒(𝑡, 𝜍)d𝜍 + 𝛿2𝜛∗

2𝜀4𝜋2 ∫

𝛼

𝛼

(

𝜕𝑒(𝑡, 𝜍)
𝜕𝜍

)𝑇
𝛬
𝜕𝑒(𝑡, 𝜍)
𝜕𝜍

. (20)

Substituting inequality (20) into inequality (19) yields that

̇(𝑡) ≤𝑒𝛽𝑡 ∫

𝛼

𝛼
𝑒𝑇 (𝑡, 𝜍)Υ1𝑒(𝑡, 𝜍)d𝜍 + 𝑒𝛽𝑡 ∫

𝛼

𝛼

(

𝜕𝑒(𝑡, 𝜍)
𝜕𝜍

)𝑇
Υ2

(

𝜕𝑒(𝑡, 𝜍)
𝜕𝜍

)

d𝜍

=𝑒𝛽𝑡 ∫

𝛼

𝛼
𝐄̃𝑇 (𝑡, 𝜍)𝛩𝐄̃(𝑡, 𝜍)d𝜍,

where 𝐄̃(𝑡, 𝜍) =
(

𝑒(𝑡, 𝜍), 𝜕𝑒(𝑡,𝜍)𝜕𝑡

)𝑇
, Υ2 = 𝛬

[(

𝛿2𝜛∗

2𝜀4𝜋2
I𝑛 −

)

⊗ I
]

, Υ1 = [Λ]𝑠 − Λ
[(

 −
∑3
𝑟=1

𝑟𝑇𝑟
2𝜀𝑟

−
[ 𝜀1𝐿1+𝛽+𝜀3𝐿3𝑒𝛽𝜄 𝜄2

2 + 𝜀2𝐿2𝑒𝛽𝜚̄

2𝜚̂ − (1 −
𝜀4
2 )𝜛

∗]𝐈𝑛
)

⊗ 𝐈
]

 and 

𝛩 =
(

Υ1 0
0 Υ2

)

.

By selecting 𝜛∗, 𝜀1, 𝜀2, 𝜀3 and 𝜀4 appropriately such that 𝛩 ≤ 0, one has ̇(𝑡) ≤ 0, which yields (𝑡) ≤ (0).
On the other hand, 

(𝑡) ≥ (𝑡) ≥ 𝑒𝛽𝑡
𝜆min(𝛬)

2
‖𝑒(𝑡, ⋅)‖2[𝛼,𝛼]. (21)

So,

‖𝑒(𝑡, ⋅)‖[𝛼,𝛼] ≤ 𝜅
√

(0)𝑒−
𝛽
2 𝑡, 𝑡 ≥ 0,

where 𝜅 =
√

2
𝜆min(𝛬)

. It implies that the RDNN (1) is asymptotically synchronized. ∎

Remark 6. In [40], Barbalat’s lemma was used to prove the asymptotic synchronization of CNNs without diffusion terms under 
adaptive control. However, this analytical method cannot be directly applied to the synchronization analysis of RDNNs with mixed 
delays, because the existence of the diffusion term makes it impossible to guarantee the uniform continuity of (𝑡). Additionally, 
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Fig. 3. Variable rearrangement technique.

in [16], based on reduction to absurdity, the asymptotic synchronization of RDNNs without delay was ensured under an adaptive 
strategy. Unfortunately, this method is also inapplicable to the RDNNs considered in this article due to the existence of mixed delays. 
Inspired by [29,31], an exponential term 𝑒𝛽𝑡 was introduced into the construction of Lyapunov Krasovskii functionals and control 
design, the asymptotic synchronization of delayed RDNNs under adaptive control was successfully solved in Theorem 4. In fact, these 
methods can obtain the criteria of passivity and synchronization of RDNNs with mixed delays, but encountered the corresponding 
obstacles in research about the passivity-based synchronization. It is a topic that will be discussed in the future. 
Remark 7. Based on the traditional variable arrangement, under the assumption that each coupling matrix is irreducible, several cri-
teria based on each layer’s coupling matrix were established to ensure the synchronization of multiweighted coupled neural networks 
[6–8]. However, in real-world scenarios, such assumptions may not always hold due to the complexity and variability of network 
structures. Furthermore, the calculation of the coupling matrices at each layer may increase the complexity of the synchronization 
condition verification. Interestingly, this assumption in this article is relaxed to the irreducibility of the weighted union matrices 
formed by all coupling layers through the variable rearrangement technique. As a result, several concise and easily verified passivity 
and synchronization criteria are derived in Theorems 1–4. The key techniques are presented in Fig. 3. 

4.  Numerical simulations

Two examples are provided to verify the passivity and synchronization results in this section.
Example 1. Consider a kind of RDNNs with mixed time-varying delays and 3-weighted couplings, whose dynamics satis-
fies Eq. (1), where 𝑡 ∈ ≥ 0, 𝜍 ∈ [−5, 5],  =  = 0.6I3, 𝑐1 = 𝑐3 = 0.1, 𝑐2 = 0.2, Γ1 = diag{0.1, 0.2, 0.1}, Γ2 = diag{0.3, 0.2, 0.3}, Γ3 =
diag{0.2, 0.1, 0.2}, the corresponding functions are given by Table 2, 𝜍 ∈ [−5 + 0.1𝑝,−5 + 0.1(𝑝 + 1)] (𝑝 ∈ 0, 99) are the spatial sampling 
intervals, and the coefficient matrices 

𝐵1 =
⎡

⎢

⎢

⎣

1 5 7
−0.5 1 1.2
9 4 −0.8

⎤

⎥

⎥

⎦

, 𝐵2 =
⎡

⎢

⎢

⎣

−0.1 3 5
−2 −0.2 1
−2 −5 −0.1

⎤

⎥

⎥

⎦

, 𝐵3 =
⎡

⎢

⎢

⎣

0.1 −3 −4
0.2 0.3 −6
5 4 0.2

⎤

⎥

⎥

⎦

.

The topology is given in Fig. 1, the weighted union communication topology is evidently strong connected with 𝜉(1) = 𝜉(2) = 𝜉(3) =
0.215. By simple calculation, 𝐿1 = 𝐿3 = 1, 𝐿2 = 2.

Table 2 
Parameter selection.
 Delays and Nonlinear Activation Functions
𝜚(𝑡) = 𝑡 − exp(𝑡)

1+exp(𝑡)
, with 𝜚̂ = 0.75,

𝜄(𝑡) = 0.5 + 0.2 sin(2𝜋𝑡), with 𝜄 = 0.7,
𝑓1(𝑧𝑖) = 𝑓3(𝑧𝑖) = (tanh(𝑧1𝑖 ), tanh(𝑧

2
𝑖 ), tanh(𝑧

3
𝑖 ))

𝑇 ,
𝑓2(𝑧𝑖) = 2(tanh(𝑧1𝑖 ), tanh(𝑧

2
𝑖 ), tanh(𝑧

3
𝑖 ))

𝑇 .
 The Initial and Boundary Conditions

𝑧(𝑡, 𝜍) are given as arbitrary constants in [−60, 60], (𝑡, 𝜍) ∈ [−0.75, 0] × (−5, 5),
𝑧𝑖(𝑡,−5) = 𝑧𝑖(𝑡, 5) = 03.

 The Input and Output Vectors
𝑦𝑖(𝑡, 𝜍) = 𝑃𝑒𝑖(𝑡, 𝜍) +𝑄𝜔̄𝑖(𝑡, 𝜍), 𝑖 ∈ 1, 5 with 𝑃 = 4𝐈3 and 𝑄 = 5𝐈3.

𝜔𝑖(𝑡, 𝜍) =

⎛

⎜

⎜

⎜

⎝

0.07𝑖 sin( 𝜋
2
+ 𝑥) cos(0.01𝑡)

0.09𝑖 sin( 𝜋
2
+ 𝑥) cos(0.005𝑡)

0.05𝑖 sin( 𝜋
2
+ 𝑥) cos(0.003𝑡)

⎞

⎟

⎟

⎟

⎠

.
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Fig. 4. Evolution of function 𝜓1(𝑡) and the error 𝑒𝑘𝑖 (𝑡, 𝜍) in Case I.

Fig. 5. Evolution of function 𝜓2(𝑡) and the error 𝑒𝑘𝑖 (𝑡, 𝜍) in Case II.

To verify the passivity of the error system (5), define

𝜓1(𝑡) = ∫

𝛼

𝛼
𝑦̂𝑇 (𝑡, 𝜍)𝜔̂(𝑡, 𝜍)d𝜍 − ∫

𝛼

𝛼
𝜔̂𝑇 (𝑡, 𝜍)1𝜔̂(𝑡, 𝜍)d𝜍 − ∫

𝛼

𝛼
𝑦̂𝑇 (𝑡, 𝜍)2𝑦̂(𝑡, 𝜍)d𝜍 − 𝑉̇ (𝑡),

𝜓2(𝑡) = ∫

𝛼

𝛼
𝑦̂𝑇 (𝑡, 𝜍)𝜔̂(𝑡, 𝜍)d𝜍 − ∫

𝛼

𝛼
𝜔̂𝑇 (𝑡, 𝜍)1𝜔̂(𝑡, 𝜍)d𝜍 − 𝑉̇ (𝑡),

𝜓3(𝑡) = ∫

𝛼

𝛼
𝑦̂𝑇 (𝑡, 𝜍)𝜔̂(𝑡, 𝜍)d𝜍 − ∫

𝛼

𝛼
𝑦̂𝑇 (𝑡, 𝜍)2𝑦̂(𝑡, 𝜍)d𝜍 − 𝑉̇ (𝑡).

Case I. To satisfy the conditions 𝐶1 and 𝐶2 in Theorem 1, choosing 𝜀1 = 𝜀2 = 𝜀3 = 7, 𝜀4 = 2, and by utilizing MATLAB LMI toolbox,

 =
⎡

⎢

⎢

⎣

12.5585 0.1938 −0.1117
0.1938 12.1270 0.0632
−0.1117 0.0632 12.7263

⎤

⎥

⎥

⎦

⊗ 𝐈5, 1 =
⎡

⎢

⎢

⎣

17.6768 0.2102 −0.1839
0.2353 17.1807 0.0642
−0.0729 0.0813 17.8698

⎤

⎥

⎥

⎦

⊗ 𝐈5,

2 =
⎡

⎢

⎢

⎣

1.0974 −19.8240 95.3621
19.8611 1.0562 10.5091
95.3833 −10.4970 1.1134

⎤

⎥

⎥

⎦

⊗ 𝐈5,

and the control gain 𝜛 = 12.2429I5. Under the spatial sampling controller (7), from Theorem 1, the strict passivity of error system 
(5) is achieved and shown in Fig. 4.

Case II. When 2 = 015, choose 𝜀1 = 𝜀3 = 9, 𝜀2 = 6, 𝜀4 = 0.8. By employing the MATLAB LMI toolbox, ,1 are solved as 

 =
⎡

⎢

⎢

⎣

0.1648 −0.0692 0.0493
−0.0692 0.3336 −0.0254
0.0493 −0.0254 0.1136

⎤

⎥

⎥

⎦

⊗ I5, 1 =
⎡

⎢

⎢

⎣

0.3278 31.5829 37.4941
−31.8403 0.6412 −20.3522
−37.3136 20.2572 0.2337

⎤

⎥

⎥

⎦

⊗ I5,
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Fig. 6. Evolution of function 𝜓3(𝑡) and the error 𝑒𝑘𝑖 (𝑡, 𝜍) in Case III.

Fig. 7. Spatiotemporal evolution of 𝑒𝑘𝑖 (𝑡, 𝜍) without control.

and control gain 𝜛 = 36.1213I5. Under the spatial sampling controller (7), the error system (5) is input-strictly passive and shown in 
Fig. 5.

Case III. When 1 = 015, select 𝜀1 = 3, 𝜀2 = 6, 𝜀3 = 2, and 𝜀4 = 1.7. By employing the MATLAB LMI toolbox, , 2 are calculated 
as 

 =
⎡

⎢

⎢

⎣

8.0862 0.9488 −0.4061
0.9488 6.7500 0.2155
−0.4061 0.2155 8.9455

⎤

⎥

⎥

⎦

⊗ I5, 2 =
⎡

⎢

⎢

⎣

0.7562 898.0732 455.6378
−897.8896 0.6270 −4.8870
−455.7162 4.9288 0.8392

⎤

⎥

⎥

⎦

⊗ I5.

and control gain 𝜛 = 11.4197I5. Based on Corollary 2, under the spatial sampling controller (7), the error system (5) is output-strictly 
passive and shown in Fig. 6.
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Fig. 8. Synchronization evolution under the spatial sampled-data controller (7).

Next, the asymptotic synchronization of the RDNN (1) is verified. Fig. 7 shows that the RDNN (1) fails to be synchronized in the 
absence of control. Under the spatial sampled-data controller (7), the error system (5) is output-strictly passive in Case III. When 
𝜔̂(𝑡, 𝜍) ≡ 015, the network (1) is asymptotically synchronized, as ensured by Theorem 2 and illustrated by Fig. 8.

In what follows, the asymptotic synchronization of system (1) under adaptive spatial sampling controller (15) is verified. Choose 
𝛽 = 0.001, 𝛿𝑖 = 5 and the initial conditions 𝜛𝑖(𝑡, 𝜍) are given as the arbitrary constants in [0, 10] (𝑖 ∈ 1, 5, (𝑡, 𝜍) ∈ [−0.75, 0] × (−5, 5)). 
The asymptotic synchronization of the RDNN (1) with 𝜔̂(𝑡, 𝜍) ≡ 015 is achieved and shown in Fig. 9, and the dynamic of control gain 
𝜛𝑖(𝑡, 𝜍) is illustrated by Fig. 10.
Example 2.  Based on the chaotic Logistic encryption scheme with the scrambling operation in [44], the passivity-based synchro-
nization of RDNN (1) and the corresponding chaotic sequence are applied to image encryption and decryption via spatial sampling 
controller (7). The spatiotemporal chaotic behavior of 𝑧̄ in the RDNN (1) is shown in Fig. 11. 

The RDNN (1) and the weighted-average state (4) are regarded as receivers and sender, respectively. According to Example 1, the 
RDNN (1) is synchronized after 𝑇 0 = 5. The flow of the encryption algorithm is shown in Fig. 12. The detailed steps are as follows.

Step 1. Original image process. Read the original image 𝐼0 and resize it to 256 × 256. Separate color image 𝐼0 into red, green, 
and blue components so that three pixel series are formulated, 𝐴(ℎ, 𝑗), 𝐵(ℎ, 𝑗), 𝐶(ℎ, 𝑗), ℎ ∈ 1, 256, 𝑗 ∈ 1, 256.

Step 2. Chaotic signal process. The chaotic sequences generated in system (4) are transformed to three security channels and 
denoted as 𝑥, 𝑦, 𝑧. Then, amplify the chaotic signals at a certain scale,

𝑋 = 10000(𝑥 + 5), 𝑌 = 10000(𝑦 + 5), 𝑍 = 10000(𝑧 + 5).

To facilitate the XOR operation, the scaled chaotic signals 𝑋, 𝑌 ,𝑍 are converted into 8-bit integers 𝑋0, 𝑌0, 𝑍0 by using the im2uint8
function

𝑋0 = im2uint8(𝑋), 𝑌0 = im2uint8(𝑌 ), 𝑍0 = im2uint8(𝑍).

Subsequently, rearranging the chaotic sequences 𝑋, 𝑌 , 𝑍 to generate three new indexed sequences 𝑙𝑥, 𝑙𝑦, 𝑙𝑧. The color matrices 𝐴,𝐵, 𝐶
of the original image are reshaped into three vectors 𝐴1, 𝐵1, 𝐶1, i.e.,

𝐴1 = reshape(𝐴, 1, 𝑛 ), 𝐵1 = reshape(𝐵, 1, 𝑛 ), 𝐶1 = reshape(𝐶, 1, 𝑛 ).

Step 3. Encryption. The encrypted pixel matrices of original image are generated by applying the following XOR operation
𝐴2 = 𝐴1 ⊕𝑋0, 𝐵2 = 𝐵1 ⊕ 𝑌0, 𝐶2 = 𝐶1 ⊕𝑍0.
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Fig. 9. Synchronization evolution under controller (15).

Fig. 10. Control gains 𝜛𝑖(𝑡, 𝜍) in controller (15), 𝑖 ∈ 1, 5.

Then, rearranging the pixel values in 𝐴2, 𝐵2, 𝐶2 based on indices 𝑙𝑥, 𝑙𝑦, 𝑙𝑧. Finally, the encrypted image 𝐼1 is obtained by

𝐴3 = reshape(𝐴2, 𝑛, ), 𝐵3 = reshape(𝐵2, 𝑛, ), 𝐶3 = reshape(𝐶2, 𝑛, ).

The decryption procedures are outlined as follows.
Step 1. Original image process. Read the original image 𝐼1. Separate color image 𝐼1 into red, green, and blue components so 

that three pixel series are yielded, 𝐴4(ℎ, 𝑗), 𝐵4(ℎ, 𝑗), 𝐶4(ℎ, 𝑗), ℎ ∈ 1, 256, 𝑗 ∈ 1, 256.
Step 2. Chaotic signal process. The chaotic sequences generated in system (1) are transformed to three security channels and 

denoted as 𝑥1, 𝑦1, 𝑧1. Then, amplify the chaotic signals at a certain scale,

𝑋1 = 10000(𝑥1 + 5), 𝑌1 = 10000(𝑦1 + 5), 𝑍1 = 10000(𝑧1 + 5).
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Fig. 11. The spatiotemporal chaotic behavior of the RDNN (1).

Fig. 12. Flow of image encryption and decryption.

To facilitate the XOR operation, the scaled chaotic signals 𝑋1, 𝑌1, 𝑍1 are converted into 8-bit integers 𝑋(1)
0 , 𝑌 (1)

0 , 𝑍(1)
0  by using the 

im2uint8 function
𝑋(1)

0 = im2uint8(𝑋1), 𝑌
(1)
0 = im2uint8(𝑌1), 𝑍

(1)
0 = im2uint8(𝑍1).

Subsequently, rearranging the chaotic sequences 𝑋1, 𝑌1, 𝑍1 to generate three new indexed sequences 𝑙(1)𝑥 , 𝑙(1)𝑦 , 𝑙(1)𝑧 . The color matrices 
𝐴4, 𝐵4, 𝐶4 of the original image are reshaped into three vectors

𝐴5 = reshape(𝐴4, 1, 𝑛 ), 𝐵5 = reshape(𝐵4, 1, 𝑛 ), 𝐶5 = reshape(𝐶4, 1, 𝑛 ).

Step 3. Decryption. The encrypted pixel matrices of original image are generated by applying the following XOR operation
𝐴6 = 𝐴5 ⊕𝑋(1)

0 , 𝐵6 = 𝐵5 ⊕ 𝑌 (1)
0 , 𝐶6 = 𝐶5 ⊕𝑍(1)

0 .

Then, rearrange the pixel values in 𝐴6, 𝐵6, 𝐶6 utilizing indices 𝑙(1)𝑥 , 𝑙(1)𝑦 , 𝑙(1)𝑧 . Finally, the decrypted image 𝐼3 is obtained by
𝐴7 = reshape(𝐴6, 𝑛, ), 𝐵7 = reshape(𝐵6, 𝑛, ), 𝐶7 = reshape(𝐶6, 𝑛, ).

A 512 Ã– 512 grayscaling pepper image is selected as the test image shown in Fig. 13. The encrypted image is illustrated in Fig. 14, 
where the underlying image becomes indistinguishable. Through a series of reverse operations, the image is successfully decrypted, as 
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Fig. 13. Original Image.

Fig. 14. Encrypted Image.

Fig. 15. Decrypted Image.

depicted in Fig. 15. Obviously, the decrypted image Fig. 15 is identical to the original image Fig. 13, which implies that the proposed 
passivity-based synchronization criteria and controller has reliable performance in image encryption and decryption.

5.  Conclusion

This article investigated the passivity and synchronization of RDNNs with mixed delays and multi-weighted couplings based on 
spatial sampling control strategy. By constructing the Lyapunov Krasovskii functional, several passivity and synchronization criteria 
were derived by the technique of rearranging variable order and inequality skills. These conditions are determined by the diffu-
sion coefficients, coupled strengths, time delays, sampling interval length and control parameters. An adaptive spatial sampling 
control scheme was proposed and the adaptive synchronization was rigorously analyzed. This control strategy integrates spatial sam-
pling control with adaptive control, effectively reducing control costs and facilitating practical operation. Furthermore, the proposed 
passivity-based synchronization criteria and controllers have been applied to image encryption and decryption.

Recently, fixed-time/prescribed-time synchronization of complex networks were frequently considered in latest research [45], and 
the boundary limited-time synchronization of RDNNs has also emerged [46]. It inspires us to explore the limited-time passivity-based 
synchronization of RDNNs via spatial sampling control in the latest work.
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